76 research outputs found

    Field emission from single multi-wall carbon nanotubes

    Full text link
    Electron field emission characteristics of individual multiwalled carbon nanotubes have been investigated by a piezoelectric nanomanipulation system operating inside a scanning electron microscopy chamber. The experimental setup ensures a high control capability on the geometric parameters of the field emission system (CNT length, diameter and anode-cathode distance). For several multiwalled carbon nanotubes, reproducible and quite stable emission current behaviour has been obtained with a dependence on the applied voltage well described by a series resistance modified Fowler-Nordheim model. A turn-on field of about 30 V/um and a field enhancement factor of around 100 at a cathode-anode distance of the order of 1 um have been evaluated. Finally, the effect of selective electron beam irradiation on the nanotube field emission capabilities has been extensively investigated.Comment: 16 pages, 5 figure

    The DAMA/LIBRA apparatus

    Get PDF
    The \simeq 250 kg highly radiopure NaI(Tl) DAMA/LIBRA apparatus, running at the Gran Sasso National Laboratory (LNGS) of the I.N.F.N., is described.Comment: 37 pages, 27 figure

    The local adsorption geometry of benzenethiolate on Cu(1 0 0)

    Get PDF
    The local adsorption geometry of benzenethiolate in the ordered c(2 × 6) phase on Cu(1 0 0) has been investigated by a combination of S K-edge near-edge X-ray absorption fine structure (NEXAFS), normal incidence X-ray standing waves (NIXSW) and S 1s scanned-energy mode photoelectron diffraction (PhD). NEXAFS and PhD show that the molecular plane is tilted from the surface normal by 20 ± 15°, while NIXSW clearly identifies the S head-group as occupying the four-fold coordinated hollow sites. PhD shows the S atoms lies 1.34 ± 0.04 Å above the outermost Cu atomic layer, leading to a Cu–S bondlength of 2.25 ± 0.02 Å. The combination of the PhD and NIXSW results shows the Cu surface layer has an outward relaxation of 0.15 ± 0.06 Å. Possible origins for this large adsorbate-induced relaxation are discussed

    Further results from DAMA/LIBRA-phase2 and perspectives

    Get PDF
    The data collected by the DAMA/LIBRA-phase2 set-up during two additional annual cycles have been analyzed, further investigating the long-standing model-independent annual modulation effect pointed out by DAMA deep underground at the Gran Sasso National Laboratory of the I.N.F.N. by using various different experimental configurations. Including the new results, the total exposure of DAMA/LIBRA-phase2 over 8 annual cycles is 1.53 t·yr and the evidence for a signal that meets all the requirements of the model-independent Dark Matter annual modulation signature is 11.8 σ C.L. in the energy region (1 - 6) keV. In the (2 - 6) keV energy interval, where data are also available from DAMA/NaI and DAMA/LIBRA-phase1, the achieved C.L. for the full exposure of 2.86 t·yr is 13.7 σ. No systematics or side reaction able to mimic this signature (i.e., to account for the whole measured modulation amplitude and to simultaneously satisfy all the requirements of the signature) has been found or suggested by anyone throughout some decades thus far. A preliminary result on the further lowering of the software energy threshold and perspectives are also mentioned

    Anomalous coarsening driven by reversible charge transfer at metal–organic interfaces

    Get PDF
    The unique electronic properties and functional tunability of polycyclic aromatic hydrocarbons have recently fostered high hopes for their use in flexible, green, portable, and cheap technologies. Most applications require the deposition of thin molecular films onto conductive electrodes. The growth of the first few molecular layers represents a crucial step in the device fabrication since it determines the structure of the molecular film and the energy level alignment of the metal–organic interface. Here, we explore the formation of this interface by analyzing the interplay between reversible molecule–substrate charge transfer, yielding intermolecular repulsion, and van der Waals attractions in driving the molecular assembly. Using a series of ad hoc designed molecules to balance the two effects, we combine scanning tunnelling microscopy with atomistic simulations to study the self-assembly behavior. Our systematic analysis identifies a growth mode characterized by anomalous coarsening that we anticipate to occur in a wide class of metal–organic interfaces and which should thus be considered as integral part of the self-assembly process when depositing a molecule on a conducting surface

    Intermolecular band dispersions in single-crystalline anthracene multilayer films

    Get PDF
    We report on the crystal and electronic structures of single-crystalline anthracene multilayer films grown onto Cu(110) surfaces at 140 K. Electron diffraction patterns and angle-resolved ultraviolet photoelectron spectra are consistent with a thin film phase characterized by a “standing-up” molecular orientation and a squarelike unit cell within the plane of herringbone-stacked molecular layers. A single orientation of the film is achieved in an epitaxial relation with the lattice of the substrate surface. A clear dispersion of intermolecular bands relates anisotropic charge-carrier transport to particular crystallographic directions

    The evolution of benzenethiol self assembled monolayer on the Cu(100) surface

    No full text
    Benzenethiol (C6H5SH) adsorption on the Cu(100) surface at room temperature has been studied using high resolution UV photoelectron spectroscopy (HRUPS), low energy electron diffraction (LEED) and work function change . Benzenethiol reacts with the copper surface, forming an S–Cu bond and an ordered thiolate layer. Two subsequent phases of the self-assembled monolayer formation have been clearly identified as a function of exposure. At low coverage, a c (4 x 4) reconstruction is observed in the LEED pattern, and the valence photoemission signals are consistent with flat molecular arrangement on the Cu(100) surface, where the phenyl group interacts via the p orbitals. At higher coverage, the LEED pattern shows a high density phase with c (2 x 6) symmetry; in the photoemission spectra the signals coming from the molecular orbitals localized on the benzene ring closely resemble the features observed in the gas phase spectra, thus suggesting an upright position of the molecule
    corecore