5,407 research outputs found

    Erosion versus construction: The origin of Venusian channels

    Get PDF
    Lava channels are a common feature in the volcanic regions of the Moon, and have now been observed on Venus. There has been much debate about the origin of lunar channels as to whether they are the result of erosional (either thermal or mechanical) or constructional processes. It is necessary to determine the criteria to distinguish between the different types of channels. The clearest evidence is that the presence of levees indicates that the channel experienced a constructional phase for a period. One example of a channel of this type in the southeast region of Aphrodite Terra appears to show both erosional and constructional characteristics. It is approximately 700 km long with an average width of about 1 km. It drops a distance of 700 m from beginning to end, which means that the average slope is 0.06 degrees. Its source may have been a graben situated at the northwest end of the channel. It appears to have different origins along its length. The lack of levees near the source suggests that the channel is erosional in this region. The presence of levees indicates that a constructional phase has occurred. These are formed by lava repeatedly splashing over the channel sides and solidifying. Evidence of levees is seen further away from the source. However, the presence of levees does not mean that the lava was not also eroding and deepening the channel. Thus, in conclusion, our example channel is very sinuous and there is evidence of erosion. There may also have been overflow here. In its middle reaches it roofs over and has the characteristics of a lava tube. In the lower reaches there is strong evidence for the presence of levees indicating construction. On Earth, limited amounts of erosion may occur in basaltic lava channels, although not nearly on the same scale as on the planets just mentioned. For lava erosion on Earth to occur to a comparable extent, excessive eruption times are required. However, low-viscosity komatiite lava may erode to a larger extent and there is direct evidence that carbonatite lava erodes when the underlying strata is also carbonatite. Previously, it has always been assumed that for thermal erosion to occur the flow must be turbulent. Recent findings indicate that this may be a false assumption and that laminar flow may be effective in eroding the substrate

    Polar Volatiles Exploration in Peary Crater Enabled by NASA's Kilopower Project

    Get PDF
    For more than 50 years, scientists have discussed the possibility of the existence of water ice and other frozen volatiles at the lunar poles [1]. However, it was not until the 1990s when the polar orbiting spacecraft Clementine and Lunar Prospector collected data supporting these hypotheses [2]. Subsequent missions, including the Lunar Reconnaissance Orbiter (LRO) mission [3], and the Lunar Crater Observation and Sensing Satellite (LCROSS) mission [4], provided further evidence that supports the existence of water ice deposits at the lunar poles. During NASA's Constellation Program, several areas at both lunar poles polar were included in 50 Regions of Interest (ROI) for intensive study by the Lunar Reconnaissance Orbiter Camera (LROC) [5]. These polar ROI focused on peaks and craters rims that received high amounts of solar illumination, assuming initial missions back to the lunar surface would utilize solar arrays to generate electricity. Recently, the successful demonstration of NASA's Kilopower Project at the National Nuclear Security Administration (NNSA) Nevada National Security Site makes it possible to consider lunar polar missions at locations other than highly illuminated regions. The Kilopower Project was initiated in 2015 to demonstrate subsystem-level technology readiness of a small space fission power system [6]. This abstract describes the science objectives and operations for a mission concept developed at NASA Glenn Research Center's COMPASS Concurrent Engineering Team for a 1-year exploration of Peary Crater focused on prospecting for lunar polar volatiles

    Initial Observations of Lunar Impact Melts and Ejecta Flows with the Mini-RF Radar

    Get PDF
    The Mini-RF radar on the Lunar Reconnaissance Orbiter's spacecraft has revealed a great variety of crater ejecta flow and impact melt deposits, some of which were not observed in prior radar imaging. The craters Tycho and Glushko have long melt flows that exhibit variations in radar backscatter and circular polarization ratio along the flow. Comparison with optical imaging reveals that these changes are caused by features commonly seen in terrestrial lava flows, such as rafted plates, pressure ridges, and ponding. Small (less than 20 km) sized craters also show a large variety of features, including melt flows and ponds. Two craters have flow features that may be ejecta flows caused by entrained debris flowing across the surface rather than by melted rock. The circular polarization ratios (CPRs) of the impact melt flows are typically very high; even ponded areas have CPR values between 0.7-1.0. This high CPR suggests that deposits that appear smooth in optical imagery may be rough at centimeter- and decimeter- scales. In some places, ponds and flows are visible with no easily discernable source crater. These melt deposits may have come from oblique impacts that are capable of ejecting melted material farther downrange. They may also be associated with older, nearby craters that no longer have a radar-bright proximal ejecta blanket. The observed morphology of the lunar crater flows has implications for similar features observed on Venus. In particular, changes in backscatter along many of the ejecta flows are probably caused by features typical of lava flows

    HERA Physics Beyond the Standard Model

    Get PDF
    The prospects of physics beyond the standard model in deep inelastic scattering are reviewed, emphasizing some scenarios which attained attention after the observation of an excess of events with large momentum transfer at HERA.Comment: 8 pages, LaTeX, uses iop style files and axodraw.sty, Talk presented at the 3rd UK Phenomenology Workshop on HERA Physics, September 1998, Durha

    Evidence for Water Ice on the Moon: Results for Anomalous Polar Craters from the LRO Mini-RF Imaging Radar

    Get PDF
    The Mini-RF radar instrument on the Lunar Reconnaissance Orbiter spacecraft mapped both lunar poles in two different RF wavelengths (complete mapping at 12.6 cm S-band and partial mapping at 4.2 cm X-band) in two look directions, removing much of the ambiguity of previous Earth- and spacecraft-based radar mapping of the Moon's polar regions. The poles are typical highland terrain, showing expected values of radar cross section (albedo) and circular polarization ratio (CPR). Most fresh craters display high values of CPR in and outside the crater rim; the pattern of these CPR distributions is consistent with high levels of wavelength-scale surface roughness associated with the presence of block fields, impact melt flows, and fallback breccia. A different class of polar crater exhibits high CPR only in their interiors, interiors that are both permanently dark and very cold (less than 100 K). Application of scattering models developed previously suggests that these anomalously high-CPR deposits exhibit behavior consistent with the presence of water ice. If this interpretation is correct, then both poles may contain several hundred million tons of water in the form of relatively "clean" ice, all within the upper couple of meters of the lunar surface. The existence of significant water ice deposits enables both long-term human habitation of the Moon and the creation of a permanent cislunar space transportation system based upon the harvest and use of lunar propellant

    Evidence for Water Ie on the Moon: Results for Anomalous Polar Craters from the LRO Mini-RF Imaging Radar

    Get PDF
    The Mini-RF radar instrument on the Lunar Reconnaissance Orbiter spacecraft mapped both lunar poles in two different RF wavelengths (complete mapping at 12.6 cm S-band and partial mapping at 4.2 cm X-band) in two look directions, removing much of the ambiguity of previous Earth- and spacecraft-based radar mapping of the Moon's polar regions. The poles are typical highland terrain, showing expected values of radar cross section (albedo) and circular polarization ratio (CPR). Most fresh craters display high values of CPR in and outside the crater rim; the pattern of these CPR distributions is consistent with high levels of wavelength-scale surface roughness associated with the presence of block fields, impact melt flows, and fallback breccia. A different class of polar crater exhibits high CPR only in their interiors, interiors that are both permanently dark and very cold (less than 100 K). Application of scattering models developed previously suggests that these anomalously high-CPR deposits exhibit behavior consistent with the presence of water ice. If this interpretation is correct, then both poles may contain several hundred million tons of water in the form of relatively "clean" ice, all within the upper couple of meters of the lunar surface. The existence of significant water ice deposits enables both long-term human habitation of the Moon and the creation of a permanent cislunar space transportation system based upon the harvest and use of lunar propellant

    Baryon polarization in low-energy unpolarized meson-baryon scattering

    Full text link
    We compute the polarization of the final-state baryon, in its rest frame, in low-energy meson--baryon scattering with unpolarized initial state, in Unitarized BChPT. Free parameters are determined by fitting total and differential cross-section data (and spin-asymmetry or polarization data if available) for pKpK^-, pK+pK^+ and pπ+p\pi^+ scattering. We also compare our results with those of leading-order BChPT

    Correction to: Instrumented Mouthguards in Elite-Level Men's and Women's Rugby Union: The Incidence and Propensity of Head Acceleration Events in Matches.

    Get PDF
    The original article can be found online at https://doi.org/10.1007/s40279-023-01953-

    Instrumented Mouthguards in Elite-Level Men's and Women's Rugby Union: The Incidence and Propensity of Head Acceleration Events in Matches.

    Get PDF
    OBJECTIVES: The aim of this study was to examine head acceleration event (HAE) propensity and incidence during elite-level men's and women's rugby union matches. METHODS: Instrumented mouthguards (iMGs) were fitted in 92 male and 72 female players from nine elite-level clubs and three international teams. Data were collected during 406 player matches (239 male, 167 female) using iMGs and video analysis. Incidence was calculated as the number of HAEs per player hour and propensity as the proportion of contact events resulting in an HAE at a range of linear and angular thresholds. RESULTS: HAE incidence above 10 g was 22.7 and 13.2 per hour in men's forwards and backs and 11.8 and 7.2 per hour in women's forwards and backs, respectively. Propensity varied by contact event, with 35.6% and 35.4% of men's tackles and carries and 23.1% and 19.6% of women's tackles and carries producing HAEs above 1.0 krad/s2. Tackles produced significantly more HAEs than carries, and incidence was greater in forwards compared with backs for both sexes and in men compared with women. Women's forwards were 1.6 times more likely to experience a medium-magnitude HAE from a carry than women's backs. Propensity was similar from tackles and carries, and between positional groups, while significantly higher in men than women. The initial collision stage of the tackle had a higher propensity than other stages. CONCLUSION: This study quantifies HAE exposures in elite rugby union players using iMGs. Most contact events in rugby union resulted in lower-magnitude HAEs, while higher-magnitude HAEs were comparatively rare. An HAE above 40 g occurred once every 60-100 min in men and 200-300 min in women. Future research on mechanisms for HAEs may inform strategies aimed at reducing HAEs

    Photoproduction of pions and properties of baryon resonances from a Bonn-Gatchina partial wave analysis

    Full text link
    Masses, widths and photocouplings of baryon resonances are determined in a coupled-channel partial wave analysis of a large variety of data. The Bonn-Gatchina partial wave formalism is extended to include a decomposition of t- and u-exchange amplitudes into individual partial waves. The multipole transition amplitudes for γppπ0\gamma p\to p\pi^0 and γpnπ+\gamma p\to n\pi^+ are given and compared to results from other analyses.Comment: 18 pages, 14 figure
    corecore