2,571 research outputs found

    Adherence to secondary stroke prevention strategies - Results from the German stroke data bank

    Get PDF
    Only very limited data are available concerning patient adherence to antithrombotic medication intended to prevent a recurrent stroke. Reduced adherence and compliance could significantly influence the effects of any stroke prevention strategies. This study from a large stroke data bank provides representative data concerning the rate of stroke victims adhering to their recommended preventive medication. During a 2-year period beginning January 1, 1998, all patients with acute stroke or TIA in 23 neurological departments with an acute stroke unit were included in the German Stroke Data Bank. Data were collected prospectively, reviewed, validated and processed in a central data management unit. Only 12 centers with a follow-up rate of 80% or higher were included in this evaluation. 3,420 patients were followed up after 3 months, and 2,640 patients were followed up one year after their stroke. After one year, 96% of all patients reported still adhere to at least one medical stroke prevention strategy. Of the patients receiving aspirin at discharge, 92.6% reported to use that medication after 3 months and 84% after one year, while 81.6 and 61.6% were the respective figures for clopidogrel, and 85.2 and 77.4% for oral anticoagulation. Most patients who changed medication switched from aspirin to clopidogrel. Under the conditions of this observational study, adherence to stroke prevention strategies is excellent. The highest adherence rate is noticed for aspirin and oral anticoagulation. After one year, very few patients stopped taking stroke preventive medication. Copyright (C) 2003 S. Karger AG, Basel

    Reynolds number dependence of Reynolds and dispersive stresses in turbulent channel flow past irregular near-Gaussian roughness

    Get PDF
    Direct numerical simulations of fully-developed turbulent channel flow with irregular rough walls have been performed at four friction Reynolds numbers, namely, 180, 240, 360 and 540, yielding data in both the transitionally- and fully-rough regime. The same roughness topography, which was synthesised with an irregular, isotropic and near-Gaussian height distribution, is used in each simulation. Particular attention is directed towards the wall-normal variation of flow statistics in the near-roughness region and the fluid-occupied region beneath the crests, i.e. within the roughness canopy itself. The goal of this study is twofold. (i) Provide a detailed account of first- and second-order double-averaged velocity statistics (including profiles of mean velocity, dispersive stresses, Reynolds stresses, shear stress gradients and an analysis of the mean force balance) with the overall aim of understanding the relative importance of “form-induced” and “turbulence-induced” quantities as a function of the friction Reynolds number. (ii) Investigate the possibility of predicting the levels of streamwise dispersive stress using a phenomenological closure model. Such an approach has been applied successfully in the context of idealised vegetation canopies (Moltchanov & Shavit, 2013, Water Resour. Res., vol. 49, pp. 8222-8233) and is extended here, for the first time, to an irregular rough surface. Overall, the results reveal that strong levels of dispersive stress occur beneath the roughness crests and, for the highest friction Reynolds number considered in this study, show that the magnitude (and gradient) of these “form-induced” stresses exceed their Reynolds stress counterparts. In addition, this study emphasises that the dominant source of spatial heterogeneity within the irregular roughness canopy are “wake-occupied” regions and that a suitable parameterisation of the wake-occupied area is required to obtain an accurate prediction of streamwise dispersive stress

    Reynolds and dispersive shear stress contributions above highly skewed roughness

    Get PDF
    The roughness functions induced by irregular peak- and/or pit-dominated surfaces in a fully-developed turbulent channel flow are studied by direct numerical simulation. A surface generation algorithm is used to synthesise an irregular Gaussian heightmap with periodic boundaries. The Gaussian heightmap is decomposed into ñ€Ɠpits-only" and ñ€Ɠpeaks-only" components which produces two additional surfaces with similar statistical properties, with the exception of skewness, which is equal and opposite (S=±1.6). While the peaks-only surface yields a roughness function comparable to that of the Gaussian surface, the pits-only surface exhibits a far weaker roughness effect. Analysis of results is aided by deriving an equation for the roughness function which quantitatively identifies the mechanisms of momentum loss and/or gain. The statistical contributions of ñ€Ɠform-induced" and stochastic fluid motions to the roughness function are examined in further detail using quadrant analyses. Above the Gaussian and peaks-only surfaces, the contributions of dispersive and Reynolds shear stresses show a compensating effect, whereas, above the pits-only surface, an additive effect is observed. Overall, the results emphasise the sensitivity of the near-wall ow with respect to higher-order topographical parameters, which can, in turn, induce significant differences in the roughness function above a peak- and/or pit-dominated surface

    Cytokine Profiles of Stimulated Blood Lymphocytes in Asthmatic and Healthy Adolescents Cross the School Year

    Get PDF
    T cell cytokines play an important role in mediating airway inflammation in asthma. The predominance of a Th2 cytokine profile, particularly interleukin (IL)-4 and IL-5, is associated with the pathogenesis and course of asthma. The aim of this study was to test the hypothesis that a stressful life event alters the pattern of cytokine release in asthmatic individuals. Thirteen healthy controls and 21 asthmatic adolescents gave blood samples three times over a semester: midsemester, during the week of final examinations, and 2-3 weeks after examinations. Interferon-Îł (IFN-Îł), IL-2, IL-4, and IL-5 were measured from supernatants of cells stimulated with PHA/PMA for 24 h. Cells from asthmatic subjects released significantly more IL-5 during the examination and postexamination periods, whereas cells from healthy controls released significantly more IL-2 during the midsemester and examination periods, thereby indicating a bias for a Th2-like pattern in asthmatics and a Th 1-like pattern in healthy controls. IL-4 and IL-5 production showed a marked decrease during and after examinations in healthy controls, whereas this decline was absent in asthmatics. The ratios of IFN-Îł:IL-4 and IFN-Îł:IL-5 also revealed significant changes in the profile of cytokine release across the semester. These results indicate differential cytokine responses in asthmatics that may become pronounced during periods of cellular activation

    Concentration effects on the dynamics of liquid crystalline self-assembly: Time-resolved X-ray scattering studies.

    Get PDF
    A manifold of ordering transitions relevant to chemical and biological systems occur at interfaces from liquids to self-assembled soft solids like membranes or liquid crystals. In the present case, we were interested in understanding the phase transition from the microemulsion phase to the liquid crystal phase in terms of their driving forces, i.e., activation energy and entropy. The purpose of this work was to clarify the influence of concentration effects of the amphiphilic molecules on the nature of these self-assembly processes. By photosensitization of the model system (polyalkylglycolether (C(10)E(4)), water, decane, and cyclohexane) with laser dyes, we could effectively induce and control the phase transition through the absorption of optical photons. The photo transformation conditions were chosen in such a way that the system was in thermal equilibrium. By application of time-resolved photo small-angle X-ray scattering we could monitor the conversion process and demonstrate that the surfactant concentration has a direct impact on the activation energy, which is observable through the length of the induction time

    On Differential Rotation and Convection in the Sun

    Full text link
    We show that the differential rotation profile of the solar convection zone, apart from inner and outer boundary layers, can be reproduced with great accu- racy if the isorotation contours correspond to characteristics of the thermal wind equation. This requires that there be a formal quantitative relationship involving the entropy and the angular velocity. Earlier work has suggested that this could arise from magnetohydrodynamic stability constraints; here we argue that purely hydrodynamical processes could also lead to such a result. Of special importance to the hydrodynamical solution is the fact that the thermal wind equation is insensitive to radial entropy gradients. This allows a much more general class of solutions to fit the solar isorotation contours, beyond just those in which the entropy itself must be a function of the angular velocity. In particular, for this expanded class, the thermal wind solution of the solar rotation profile remains valid even when large radial entropy gradients are present. A clear and explicit example of this class of solution appears to be present in published numerical simulations of the solar convective zone. Though hydrodynamical in character, the theory is not sensitive to the presence of weak magnetic fields. Thus, the identification of solar isorotation contours with the characteristics of the thermal wind equation appears to be robust, accommodating, but by no means requiring, magnetic field dynamics.Comment: 16 pages, 2 figures. Accepted for publication in MNRA

    Elastic turbulence in shear banding wormlike micelles

    Full text link
    We study the dynamics of the Taylor-Couette flow of shear banding wormlike micelles. We focus on the high shear rate branch of the flow curve and show that for sufficiently high Weissenberg numbers, this branch becomes unstable. This instability is strongly sub-critical and is associated with a shear stress jump. We find that this increase of the flow resistance is related to the nucleation of turbulence. The flow pattern shows similarities with the elastic turbulence, so far only observed for polymer solutions. The unstable character of this branch led us to propose a scenario that could account for the recent observations of Taylor-like vortices during the shear banding flow of wormlike micelles

    Asymmetric Squares as Standing Waves in Rayleigh-Benard Convection

    Full text link
    Possibility of asymmetric square convection is investigated numerically using a few mode Lorenz-like model for thermal convection in Boussinesq fluids confined between two stress free and conducting flat boundaries. For relatively large value of Rayleigh number, the stationary rolls become unstable and asymmetric squares appear as standing waves at the onset of secondary instability. Asymmetric squares, two dimensional rolls and again asymmetric squares with their corners shifted by half a wavelength form a stable limit cycle.Comment: 8 pages, 7 figure
    • 

    corecore