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Reynolds and dispersive shear stress
contributions above highly skewed roughness

Thomas O. Jelly† and Angela Busse

School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK

(Received xx; revised xx; accepted xx)

The roughness functions induced by irregular peak- and/or pit-dominated surfaces in
a fully-developed turbulent channel flow are studied by direct numerical simulation.
A surface generation algorithm is used to synthesise an irregular Gaussian heightmap
with periodic boundaries. The Gaussian heightmap is decomposed into “pits-only” and
“peaks-only” components which produces two additional surfaces with similar statistical
properties, with the exception of skewness, which is equal and opposite (S = ±1.6).
While the peaks-only surface yields a roughness function comparable to that of the
Gaussian surface, the pits-only surface exhibits a far weaker roughness effect. Analysis of
results is aided by deriving an equation for the roughness function which quantitatively
identifies the mechanisms of momentum loss and/or gain. The statistical contributions
of “form-induced” and stochastic fluid motions to the roughness function are examined
in further detail using quadrant analyses. Above the Gaussian and peaks-only surfaces,
the contributions of dispersive and Reynolds shear stresses show a compensating effect,
whereas, above the pits-only surface, an additive effect is observed. Overall, the results
emphasise the sensitivity of the near-wall flow with respect to higher-order topographical
parameters, which can, in turn, induce significant differences in the roughness function
above a peak- and/or pit-dominated surface.

1. Introduction

The mean dynamics of turbulent flow past irregular rough surfaces are of significant
fundamental and practical interest. Roughness effects upon turbulent flow have been
reviewed by Jiménez (2004) and Flack & Schultz (2014). The principal effect of surface
roughness is to increase the mean momentum deficit in the outer flow, relative to a
smooth wall. The downward shift of the logarithmic layer is referred to as the roughness
function, ∆U+ (Hama 1954). Surface roughness effects are incorporated into Reynolds-
averaged Navier-Stokes (RANS) simulations by modifying the log-law with an additive
roughness function (Durbin et al. 2001). Accurate predictions of practical rough-wall flows
therefore require a detailed understanding of how ∆U+ varies with both flow conditions
and surface topography. Recent experimental campaigns (Flack et al. 2016) and numerical
simulations (Thakkar et al. 2016; Forooghi et al. 2017) have identified skewness, S, as a
key topographical parameter that influences ∆U+.

Skewness quantifies the asymmetry of a roughness distribution about its mean plane.
Positively skewed surfaces are peak-dominated, whereas negatively skewed surfaces are
pit-dominated. In the early stages of erosion and fouling, an initially smooth surface can
become blemished by a random distribution of roughness pits and/or peaks. Examples
include the ablation of freshly cast turbine blades (Bons et al. 2001) and the onset of
bio-fouling on submerged bodies (Monty et al. 2016). Many fluid dynamic properties of
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Figure 1. Roughness topographies including: (a) Gaussian; (b) peaks-only and (c) pits-only
surfaces. Each surface is generated on an (8× 4) /δ tile, where δ is the mean channel half-height.

irregular pit- and peak-dominated surfaces remain unclear. For example, the relative im-
portance of “form-induced” dispersive stresses and Reynolds stresses, and their respective
contributions to ∆U+, have yet to be considered in detail.

The present study details results from a numerical experiment specifically designed to
examine the roughness functions of three irregular surfaces: (i) a Gaussian surface; (ii)
a “peaks-only” surface and (iii) a “pits-only” surface. Surface (i) is synthesised using a
surface generation algorithm, whereas (ii) and (iii) are obtained from a decomposition
of (i). Each roughness topography is shown in figure 1. Analysis of results is aided by
deriving an equation for ∆U+ which quantitatively identifies the mechanisms of mean
momentum loss and/or gain for each surface. This paper is organised into four sections.
Section 2 outlines the numerical methodology. Results are presented in Section 3. Finally,
in Section 4, the conclusions of this work are given.

2. Numerical methodology

Direct numerical simulations (DNS) of rough-wall fully-developed turbulent channel
flows are conducted using a variant of the methodology devised by Busse et al. (2015).

2.1. Surface generation algorithm

Surface heightmaps were generated by correlating the elements of Gaussian random
number matrices using a moving average (MA) process. This method of surface generation
was devised by Patir (1978) and has been extended here with periodic boundary condi-
tions. A periodic Gaussian heightmap, hij , of size N1×N2, was generated by evaluating
the linear transformation

hij =

n1∑
k=1

n2∑
l=1

αklηrs

i = 1, 2, . . . , N1

j = 1, 2, . . . , N2

r = [i+ k − 1 (mod N1)] + 1
s = [j + l − 1 (mod N2)] + 1

(2.1)

where ηij is a matrix of uncorrelated Gaussian random numbers, αkl are a set of
coefficients that give a specified autocorrelation coefficient function (ACF), mod denotes
the modulo operator and where n1 × n2 is the dimension of the MA window.
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The MA coefficients αkl are determined by solving the system of non-linear equations

Rpq =

n1−p∑
k=1

n2−q∑
l=1

αklαk+p,l+q,
p = 0, 1, . . . , n1 − 1
q = 0, 1, . . . , n2 − 1

(2.2)

using the Newton-based method outlined by Patir (1978), where Rpq is the discrete ACF.
The Gaussian heightmap is generated with an isotropic exponential ACF

R (∆x1, ∆x2) = exp

−2.3

√(
∆x1
∆x∗1

)2

+

(
∆x2
∆x∗2

)2
 (2.3)

where (∆x1, ∆x2) denote the spatial separations in the streamwise and spanwise di-
rections, respectively, and where (∆x∗1, ∆x

∗
2) denote the spatial separations at which the

streamwise and spanwise ACF profiles reduce to 10% of their values at the origin. Further
details can be found in the work of Patir (1978).

2.2. Surface filtering and the pit-peak decomposition

To obtain a smoothly varying surface from the point cloud, the discrete Gaussian
heightmap, hij , was low-pass Fourier-filtered using the method of Busse et al. (2015).
After filtering, a “pit-peak” decomposition was applied to the Gaussian heightmap

hpit (x1, x2) = 1
2h (x1, x2) [1− sgn (h (x1, x2))] (2.4)

hpeak (x1, x2) = 1
2h (x1, x2) [1 + sgn (h (x1, x2))] (2.5)

where hpit, hpeak and h denote the pits-only, peaks-only and Gaussian heightmaps,
respectively, and where sgn denotes the Signum function.

The pit-peak decomposition of the Gaussian heightmap is shown in figure 1. Statistical
properties of each roughness topography are given in table 1. One advantage of the pit-
peak decomposition is that hpit and hpeak share very similar statistical properties up to
fourth order, with the exception of skewness, which is approximately equal and opposite
(S ≈ ±1.6). Compared to a number of recent studies (Flack et al. 2016; Thakkar et al.
2016; Forooghi et al. 2017), the maximum skewness considered in the present study is at
least a factor of two higher.

In addition to influencing the level of skewness, the pit-peak decomposition also affects
other topographical parameters. For example, the effective slope (ESx) of the pits- and
peaks-only surfaces is a factor of two lower than that of the original Gaussian surface
(see table 1). ESx is defined as the mean absolute streamwise gradient of the heightmap
and is known to scale ∆U+ for a wide range of irregular roughness topographies with
symmetric height distributions (Napoli et al. 2008; De Marchis et al. 2010; De Marchis
& Napoli 2012) as well as positively skewed pyramid roughness (Schultz & Flack 2009).
Considering that the pits- and peaks-only surfaces share an ESx of ESx < 0.35 then these
surfaces fall into the “waviness flow regime” where ESx remains an important parameter
in scaling the roughness function (Flack & Schultz 2010, 2014). However, in the context
of the pits-only surface (S ≈ −1.6) and the peaks-only surface (S ≈ 1.6), skewness is the
key topographical parameter and, as will be shown later, ESx cannot be relied upon to
scale ∆U+. Irregular surfaces with moderate effective slope are of considerable practical
importance, for example a recent surrogate for Nikuradse-type roughness (Thakkar et al.
2018) showed a moderate effective slope, which indicates that Nikuradse’s sand grain
roughness may have been ‘wavy’ based on the effective slope criterion.
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Surface Sa/δ Sq/δ S K L1,corr/δ L2,corr/δ ESx ESy Sz,5×5/δ hmax/δ 〈h〉/δ
Gaussian 0.022 0.027 0.03 3.00 0.08 0.08 0.35 0.35 0.167 0.11 -0.00

Peaks-only 0.011 0.016 1.62 5.44 0.04 0.04 0.17 0.17 0.085 0.11 -0.01
Pits-only 0.011 0.016 -1.64 5.37 0.04 0.04 0.17 0.17 0.085 0.00 -0.01

Table 1. Surface statistics including: Mean absolute height (Sa); root-mean-square
(RMS) height (Sq); skewness (S); kurtosis (K); streamwise / spanwise correlation length
(L1,corr,L2,corr); streamwise / spanwise effective slope (ESx, ESy); mean peak-to-valley height
(Sz,5×5). The highest roughness crest (hmax) and mean height (〈h〉) are also included. Further
details of these parameters can be found in work done by Thakkar et al. (2016). Note that δ is
the mean channel half-height.

Surface Reτ L1/δ L2/δ ∆x+1 ∆x+2 ∆x+3,min ∆x+3,max T+ = Tu2
τ/ν S+

a S+
q h+

max

Gaussian 395 8 4 4.94 4.94 0.67 4.5 40000 8.69 10.66 47.78
Peaks-only - - - - - - - - 4.35 5.33 47.78
Pits-only - - - - - - - - 4.35 5.33 0.00

Table 2. Rough-wall simulation parameters including: friction Reynolds number (Reτ );
domain size in the streamwise (L1) and spanwise (L2) directions; viscous-scaled grid-spacings
including streamwise

(
∆x+1

)
, spanwise

(
∆x+2

)
, minimum wall-normal

(
∆x+3,min

)
and maximum

wall-normal
(
∆x+3,max

)
values; viscous-scaled sampling period

(
T+

)
; viscous-scaled mean

absolute roughness height
(
S+
a

)
; viscous-scaled RMS roughness height

(
S+
q

)
and the

viscous-scaled highest roughness crest
(
h+
max

)
.

2.3. Direct numerical simulation of turbulent channel flow past irregular rough walls

DNS of incompressible fully-developed turbulent channel flow past rough walls were
performed at a constant mean streamwise pressure gradient using the embedded-
boundary algorithm of Busse et al. (2015). Three rough-wall simulations were performed
with roughness on both the top and bottom walls. A reference smooth-wall simulation
was also conducted. The velocity components in the streamwise (x1), spanwise (x2)
and wall-normal (x3) directions are u1, u2 and u3, respectively, and p is the fluctuating
pressure. The friction Reynolds number is defined here as Reτ ≡ uτδ/ν, where ν is
kinematic viscosity, uτ is the friction velocity and δ is the mean channel half-height
of the Gaussian rough-wall configuration. All simulations were conducted at a friction
Reynolds number of Reτ = 395. Viscous-scaled quantities are marked by superscript +,
e.g. x+3 = x3uτ/ν. The simulation parameters are listed in table 2 and are commensurate
with those in recent work related to the current study (Busse et al. 2015; Thakkar et al.
2016; Busse et al. 2017; Thakkar et al. 2018).

Statistical quantities are computed using a double-averaged (DA) methodology (Rau-
pach & Shaw 1982). An instantaneous field variable, say a, is decomposed into three
parts: (i) a DA component, 〈a〉, where overbar and angled brackets denote successive
temporal and planar (x1, x2) averages, respectively; (ii) a dispersive component, ã, and
(iii) a stochastic component, a′. The triple decomposition of a is therefore

a (x, t) = 〈a〉 (x3) + ã (x) + a′ (x, t) (2.6)
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The DA operator is defined as

〈a〉 (x3) ≡ 1

ψ (x3)

1

A

∫∫
A

a (x) dx1dx2 (2.7)

where the total area of the wall-parallel plane is A = L1L2 and the ratio of the fluid-
occupied area, Af , to the total area is ψ = Af (x3) /A. In solid-occupied regions, a (x, t) =
0. Note that the DA methodology adopted throughout the present study corresponds to
the “intrinsic” averaging procedure discussed in detail by, for example, Nikora et al.
(2007).

In the DA Navier-Stokes (DANS) equations, the DA dispersive stresses are

〈ũiũj〉 = 〈(ui − 〈ui〉) (uj − 〈uj〉)〉 (2.8)

and the DA Reynolds stresses are〈
u′iu
′
j

〉
=
〈

(ui − ui) (uj − uj)
〉

(2.9)

3. Results

In this section, the roughness functions induced by the Gaussian, peaks-only and pits-
only surfaces are examined. Analysis of results is aided by deriving an equation for ∆U+

which quantifies the contributions of dispersive shear stress (DSS) and Reynolds shear
stress (RSS) above each roughness topography.

3.1. Derivation of the roughness function equation

The potential sources of momentum loss above a rough surface can be revealed by
subtracting the streamwise component of the DANS equation from its smooth-wall
counterpart. If the friction Reynolds number is matched between the smooth and the
rough-wall case then the difference in total shear stress above the highest roughness crest
(x+3 > h+max) can be written as

0 = ∆
d
〈
u+1
〉

dx+3
+
〈
ũ+1 ũ

+
3

〉
r
−∆

〈
u′1u
′
3

+
〉

(3.1)

where ∆
〈
a+
〉
≡
〈
a+
〉
s
−
〈
a+
〉
r

denotes the difference between a smooth-wall (subscript
“s”) and a rough-wall (subscript “r”) quantity. For the current cases, the friction Reynolds
numbers between the smooth-wall case and the Gaussian case are matched, but there
is a small mismatch in the Reynolds numbers of the pits and the peaks cases due to a
non-zero mean roughness height 〈h〉 (see table 1). This leads to an additional error term
on the left-hand side of equation 3.1 that is of the order of |〈h〉| /δ (see derivation in
Appendix A). As for the current cases, |〈h〉| /δ � 1 and the corresponding mismatch in
Reτ is less than 2%. As a result, the error term can be neglected.

An equation for ∆U+ can be derived by integrating the total shear stress difference
equation 3.1 from the height of the highest roughness crest h+max to an arbitrary wall-
normal position x+3 to obtain

∆U+
(
x+3
)

= ∆
〈
u+1
〉 (
h+max

)
︸ ︷︷ ︸

∆U+
s

+

x+
3∫

h+
max

−
〈
ũ+1 ũ

+
3

〉
dx+3

︸ ︷︷ ︸
∆U+

d

+

x+
3∫

h+
max

∆
〈
u′1u
′
3

+
〉

dx+3

︸ ︷︷ ︸
∆U+

t

(3.2)
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(a)

101 102

(b)

Figure 2. Comparison of the roughness function based on the direct evaluation
∆U+ =

〈
u+
1

〉
smooth

−
〈
u+
1

〉
rough

(plotted as lines) against ∆U+ obtained using the roughness

function equation 3.2 (plotted as symbols) for the Gaussian ( ,4), peaks-only ( ,×) and
pits-only (. . . .,�) surfaces. The comparison of ∆U+ is shown in both (a) inner- and (b)
outer-scalings. The highest roughness crest of the Gaussian and peaks-only surface is also shown
( . ).

Note that the subscript “r” has been omitted for brevity. The three terms on the right-
hand side of the roughness function equation 3.2 have the following interpretation:
The first term, ∆U+

s , represents the difference in streamwise velocity at the highest
roughness crest. The second term, ∆U+

d , represents the integrated effect of the vertical
flux of streamwise dispersive momentum. The third and final term, ∆U+

t , represents the
integrated effect of the difference in the vertical flux of streamwise stochastic momentum.
MacDonald et al. (2016) derived a similar expression for ∆U+, although their expression
does not separate the DSS and RSS difference contributions.

Below the highest roughness crest
(
x+3 < h+max

)
, additional pressure gradient and

viscous diffusion terms appear on the right-hand side of the DANS equations and arise
because the DA operator (equation 2.7) does not commute with wall-normal spatial
differentiation if ψ (x3) 6= 1. In equation 3.2, the integrated effect of these additional
terms are represented implicitly by term ∆U+

s . Similar approaches have been adopted
by Garćıa-Mayoral & Jiménez (2011) and MacDonald et al. (2016) in order to decompose
∆U+ above riblets and sinusoidal roughness, respectively.

The accuracy of the roughness function equation was verified by comparing the wall-
normal variation of ∆U+ from equation 3.2 against the direct evaluation ∆U+ =〈
u+1
〉
s
−
〈
u+1
〉
r

for each surface. As shown in figure 2, close levels of agreement are observed
at all wall-normal positions. In addition, figure 2 shows that the momentum deficit
remains approximately constant from the highest crest to the channel half-height in the
presence of peaks. As a result, the roughness function equation 3.2 reduces to∆U+ (δ+) ≈
∆U+

s (h+max) for the Gaussian and peaks-only surfaces. Such an approximation does not,
however, hold above the pits-only surface. Therefore, whilst the drag force due to the
roughness peaks directly generates the momentum deficit in the outer layer, the roughness
function induced by the pits-only surface arises due to modifications of the near-wall flow.
In order to better understand these differing effects, each term on the right-hand side
of the roughness function equation 3.2 can be examined. Herein, all references to ∆U+

correspond to the centre-line value, ∆U+ (δ+), which agrees well with the downward shift
in the log-law (see figure 2a).

3.2. Analysis of the roughness function equation

The decomposition of ∆U+ based on equation 3.2 is shown in figure 3. Positive terms
represent a mean momentum loss, whereas negative terms represent a mean momentum
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Figure 3. Contributions of terms in the roughness function equation 3.2. Data for Gaussian
(�), peaks-only (�) and pits-only (�) surfaces are included for comparison.

Figure 4. Contours of time-averaged pressure, p, referenced to the mean pressure on the surface,
p0. Spanwise slices intersecting the (a) highest crest of the peaks-only surface and (b) the deepest

trough of the pits-only surface are shown. Vectors of the in-plane velocities, (u1, u3)+, and the
highest roughness crest of the peaks-only surface ( . ) are also included.

gain. Preliminary observations based on figure 3 include: (i) the roughness functions of the
Gaussian surface (∆U+ = 6.8) and the peaks-only surface (∆U+ = 6.0) are comparable,
whereas the pits-only surface yields a far lower value (∆U+ = 1.7); (ii) term ∆U+

d is
positive for all three surfaces, implying that integrated effect of DSS always increases
the mean momentum deficit and (iii) the sign of terms ∆U+

s and ∆U+
t is dependent on

the roughness topography, implying fundamental differences in the flow structure above
the peak- and pit-dominated surfaces. Overall, figure 3 shows that peaks dominate the
roughness effect, whereas pits have relatively little influence.

The sharp reduction of ∆U+ above the pits-only surface is a consequence of its negative
skewness (table 1) which, compared to positively skewed surfaces, give a lower ∆U+

across a range of friction Reynolds numbers (Flack et al. 2016; Busse et al. 2017). Other
topographical parameters, such as effective slope (ESx) are known to scale well with
∆U+. However, despite sharing a common value of ESx (table 1), the roughness functions
of the pits- and peaks-only surfaces differ by 72%. Since ESx is, by definition, an absolute
quantity, it cannot distinguish the sign of an asymmetric roughness distribution and, as a
result, cannot explain the difference in ∆U+ above the peaks- and pits-only surfaces. In
this work, differences of ∆U+ will be clarified by examining each term on the right-hand
side of the roughness function equation 3.2.

The first term on the right-hand side of the roughness function equation 3.2 is ∆U+
s

and represents the streamwise velocity offest at the highest roughness crest. For both
the Gaussian and peaks-only surfaces, terms ∆U+

s and ∆U+ match to within 1%,
whereas, above the pits-only surface, they differ in both sign and in magnitude (figure
3). To explain the opposing contributions of ∆U+

s , spanwise slices of the time-averaged
pressure field around the highest roughness crest of the peaks-only surface and the deepest



8 T. O. Jelly and A. Busse

Figure 5. DA profiles of (a) streamwise velocity; (b) DSS and (c) RSS difference above
the smooth (◦), Gaussian ( ), peaks-only ( ) and pits-only (. . . .) surfaces. The highest
roughness crest of the Gaussian and peaks-only surface is also shown ( . ).

roughness trough of the pits-only surfaces can be examined. As shown in figure 4, high-
pressure regions occur on the windward slopes of surface peaks and the windward lips
of surface pits. Low-pressure regions occur downstream of roughness peaks where the
flow separates, then reverses, before reattaching upstream. On the other hand, the flow
“skims” past the pits, inducing a reverse flow in the lower part of the cavity.

The mean flow patterns shown in figure 4 are reminiscent of those induced by k- and
d-type transverse square bar roughness. For example, the flow separation downstream
of the highest roughness peak (see figure 4(a)) resembles a k-type scenario (Perry et al.
1969; Ikeda & Durbin 2007) whereas the flow reversal within the deepest roughness
pit (see figure 4(b)) is similar to a d-type scenario (Leonardi et al. 2007). However,
considering that the mean flow around transverse square bars is spanwise homogeneous
and streamwise phase dependent, drawing a direct comparison against the time-averaged
flow properties of irregular, three-dimensional roughness topographies is not straightfor-
ward. Therefore, whilst some qualitative understanding can be drawn from figure 4,
a quantitative description of the roughness effect induced by the pits- and peaks-only
surfaces will focus on DA quantities which make up the roughness function equation 3.2.

The wall-normal variation of DA streamwise velocity above each irregular surface is
shown in figure 5(a). A DA reverse flow occurs for the Gaussian and pits-only surfaces
at a wall-normal position corresponding to the lower part of the roughness canopy, but
is not evident for the peaks-only surface. The magnitude of the reverse flow is on the
order of 2% of the centre-line velocity for each surface, which is comparable to past
results (Busse et al. 2017). At the highest roughness crest of the Gaussian and peaks-
only surfaces, ∆U+

s makes a positive contribution to ∆U+ due to integrated effect of
losses within the roughness canopy (figure 4(a)). In contrast, for the pits-only surface,
the negative contribution of ∆U+

s arises due to the DA effect of “skimming” (figure 4(b))
which is manifest as a “slip-velocity” in the mean velocity profile. A similar slip effect
occurs for regular d-type roughness geometries whereby the DA effect of stable cavity
vortices would result in a streamwise velocity offset (i.e. ∆U+

s < 0) at the highest crest
(Jiménez 2004).

The second term on the right-hand side of the roughness function equation 3.2 is ∆U+
d

and represents the integrated effect of “form-induced” momentum transport above the
roughness canopy. This term makes a positive contribution to ∆U+ for each surface
(figure 3). Relative to the Gaussian surface, the removal of pits and peaks reduce term
∆U+

d by 20% and 80%, respectively, implying that roughness pits are an ineffective source
of DSS. The wall-normal variation of DSS is plotted in figure 5(b) and confirms weakened
“form-induced” shear stress above the pits-only surface. On the other hand, appreciable
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Figure 6. Quadrant analysis of DSS showing Q̃1 (. . . .); Q̃2 ( ); Q̃3 (. . . .) and Q̃4 ( )
for (a) Gaussian; (b) peaks-only and (c) pits-only surfaces. The sum over all quadrants ( ) and
the highest roughness crest of the Gaussian and peaks-only surface are also shown ( . ).

levels of DSS are induced within the roughness canopy of the Gaussian and peaks-only
surfaces, reflecting the high degree of spatial heterogeneity in the time-averaged flow.
Above the highest roughness crest, DSS profiles continue to extend deep into the outer
flow before decaying to zero at x3/δ ≈ 0.75. The wall-normal persistence of dispersive
stresses has also been noted by Chan et al. (2017). In order to associate particular flow
events to ∆U+

d , a quadrant analysis of DSS is performed. Although quadrant analysis
is traditionally employed to classify the contributions of flow events to RSS (Wallace
et al. 1972), it has also been applied to DSS (Pokrajac et al. 2007). Considering that
∆U+

d > 0 for each surface (figure 3), then the integrated effect of Q̃2 (ũ1 < 0, ũ3 > 0)

and Q̃4 (ũ1 > 0, ũ3 < 0) events are expected to outweigh the combined effect of Q̃1

(ũ1 > 0, ũ3 > 0) and Q̃3 (ũ1 < 0, ũ3 < 0).
The quadrant decomposition of DSS can be written as

〈
ũ+1 ũ

+
3

〉
=

4∑
i=1

Q̃i (3.3)

and is plotted in figure 6. As anticipated, Q̃2 and Q̃4 events dominate Q̃1 and Q̃3

for the Gaussian and peaks-only surfaces. At the highest roughness crest, Q̃2 and Q̃4

events are approximately twice that of Q̃1 and Q̃3 and, beyond x3/δ > 0.25, activity in
odd-numbered quadrants becomes negligible. In contrast, Q̃2 and Q̃4 events persist in
to the outer flow and their respective stress fractions make equal contributions to the
local level of DSS. Above the pits-only surface, negligible quadrant activity is observed
above x3/δ > 0.1 and, within closer proximity of the pits, increase Q̃1 events are
countered by a combined rise of Q̃2 and Q̃4. However, in a narrow region above the
pits (0.002 < x3/δ < 0.018), odd-numbered activity dominates and, as a result, DSS
becomes negative (see inset in figure 6(c)). From a modeling perspective, negative DSS
may complicate the application of eddy diffusivity techniques to DANS-type simulations
(Manes et al. 2008). Overall, however, the integral contribution of negative DSS to ∆U+

is small and, as a result, term ∆U+
d remains positive.

The third and final term on the right-hand side of the roughness function equation 3.2
is ∆U+

t and represents the integrated effect of the RSS difference above the roughness
canopy. As shown in figure 3, the negative contribution of ∆U+

t above the Gaussian
and peaks-only surfaces indicates that the integrated effect of RSS is weakened, relative
to the smooth-wall value, whereas the positive contribution above the pits-only surface
indicates the opposite. The wall-normal variation of RSS difference is plotted in figure
5(c). Negligible differences of RSS are observed in the outer flow (x3/δ > 0.75) which
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Figure 7. Quadrant analysis of RSS difference including ∆Q′1 (. . . .), ∆Q′2 ( ); ∆Q′3 (. . . .)
and ∆Q′4 ( ) for (a) Gaussian; (b) peaks-only and (c) pits-only surfaces. The sum over all
quadrants ( ) and the highest roughness crest of the Gaussian and peaks-only surface are also
shown ( . ).

is in line with Townsend’s outer-layer similarity hypothesis (Townsend 1976). However,
as the highest roughness crest of the Gaussian and peaks-only surface is approached,
the RSS difference becomes negative. In constrast, above the pits-only surface, the RSS
difference is positive below x3/δ < 0.1. In order to associate particular flow events to
∆U+

t , the RSS difference is also examined using quadrant analysis.
The quadrant decomposition of RSS difference can be written as

∆
〈
u′1u
′
3

+
〉

= ∆

4∑
i=1

Q′i (3.4)

and is plotted in figure 7. Negative values of ∆Q′i indicate suppressed quadrant activity,
relative to smooth-wall levels, and positive values indicate the opposite. For each surface,
the magnitudes of ∆Q′1 and ∆Q′3 are small, compared to those of ∆Q′2 and ∆Q′4,
indicating the relative sensitivity of sweep and ejections events. However, the peaks and
pits influence sweep and ejection events in differing manners. For example, at the highest
roughness crest of the Gaussian and peaks-only surface, ejection events are suppressed
which leads to weakened RSS (figure 5(c)) which, in turn, makes a negative contribution
to ∆U+ through term ∆U+

t (figure 3). Above the pits-only surface, both ejections and
sweeps are strengthened, which enhances RSS in the near-wall region (figure 5(c)) and,
as result, term ∆U+

d makes a positive contribution to ∆U+.

4. Discussion

DNS of turbulent channel flow with irregular rough walls were performed at Reτ = 395.
Three roughness topographies were considered: (i) a Gaussian surface (ii) a peaks-only
surface and (iii) a pits-only surface (figure 1). Surfaces (i), (ii) and (iii) gave a ∆U+ of
6.8, 6.0 and 1.7, respectively, showing the main roughness effect of a non-skewed surface
is caused by its peaks. Further analysis of results was aided by evaluating an equation
for ∆U+ which quantitatively identified the mechanisms of momentum loss and/or gain.

The roughness function equation 3.2 indicates that ∆U+ can be split into three parts:
(i) a velocity offset at the highest roughness crest, ∆U+

s ; (ii) the integral effect of form-
induced momentum transport, ∆U+

d and (iii) the integral effect of the difference in
turbulence-induced momentum transport, ∆U+

t . In the presence of peaks, the approx-
imation ∆U+ ≈ ∆U+

s is valid and terms ∆U+
d and ∆U+

t have a compensating effect
(figure 3). On the other hand, in the absence of peaks, term ∆U+

s becomes negative
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and this “slip-velocity” effect (figure 5(a)) is offset by positive contributions from both
∆U+

d and ∆U+
t . The reduction of ∆U+ above the pits-only surface can be attributed

to two main factors: (i) suppression of losses due to a slip-type effect (figure 4) and
(ii) weakened “form-induced” shear stress due to the absence of peaks (figure 5(b), 6).
However, the reduction of ∆U+ is limited by enhanced Reynolds shear stress, which
exceeds smooth-wall levels in the near-wall region (figure 5(c), 7).

Overall, the present study underlines the dependence of the near-wall flow on higher-
order topographical parameters, namely skewness. The sensitivity of ∆U+ with respect
to skewness has been confirmed in recent experimental campaigns (Flack et al. 2016)
and numerical simulations (Forooghi et al. 2017). The current study provides a detailed
account of the mean-flow mechanisms that determine ∆U+ above a peak-dominated
(S = 1.6) and pit-dominated (S = −1.6) roughness topography. Future work should
quantify the Reynolds number dependence of irregular non-Gaussian roughness with
the ultimate goal of incorporating topography effects into RANS-type wall models. To
this end, minimal-span rough-wall DNS (MacDonald et al. 2017) could be used to achieve
fully-rough conditions for pit-dominated surfaces which, relative to their peak-dominated
counterpart, exhibit a significantly smaller ∆U+ at the same friction Reynolds number.
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Appendix A. Effect of mean channel half-height mismatch upon DA
momentum difference equations.

The friction velocity, viscous length-scale and friction Reynolds number for a fully-
developed smooth-wall turbulent channel flow can be defined as

uτ,s ≡
(
−δs
ρ
Π

)1/2

, `s ≡
ν

uτ,s
, Reτ,s ≡

δsuτ,s
ν

(A 1)

where subscript “s” denotes a smooth-wall quantity. Similar quantities can be defined
for a rough-wall turbulent channel flow

uτ,r ≡
(
−δr
ρ
Π

)1/2

, `r ≡
ν

uτ,r
, Reτ,r ≡

δruτ,r
ν

(A 2)

where subscript “r” denotes a rough-wall quantity.
After defining the ratio of the mean roughness height, 〈h〉, and the smooth-wall channel

half-height, δs, as ε ≡ −〈h〉/δs, equation A 1 and equation A 2 can be combined to obtain

δr = (1 + ε) δs, uτ,r =
(√

1 + ε
)
uτ,s, Reτ,r =

(√
1 + ε

)3
Reτ,s, `r =

1√
1 + ε

`s (A 3)

In what follows below, superscript “+” denotes quantities scaled with smooth-wall plus
units, i.e. those scaled with `s and uτ,s (equation A 1) and superscript “◦” denotes
quantities scaled with rough-wall plus units, i.e. those scaled with `r and uτ,r (equation
A 2). A similar approach has been adopted by MacDonald et al. (2016), although their
analysis does not separate the DSS and RSS difference contributions.
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The DA streamwise momentum balance equations for a smooth-wall turbulent channel
flow and a rough-wall turbulent channel flow evaluated above the highest roughness crest
can be written as

0 =
1

δ+s
+

d

dx+3,s

(
d
〈
u+1
〉
s

dx+3,s
−
〈
u′1u
′
3

+
〉
s

)
(A 4)

0 =
1

δ◦r
+

d

dx◦3,r

(
d 〈u◦1〉r
dx◦3,r

−
〈
u′1u
′
3

◦〉
r
− 〈ũ◦1ũ◦3〉r

)
(A 5)

where the following relationships have been used

1

δ+s
=
`s
δs

=
1

Reτ,s
,

1

δ◦r
=
`r
δr

=
1

Reτ,r
(A 6)

The momentum balance equations A 4 and A 5 can be integrated from an arbitrary
wall-normal position to their respective mean channel half-heights to obtain

1−
x+3,s

δ+s
=

d
〈
u+1
〉
s

dx+3,s
−
〈
u′1u
′
3

+
〉
s

(A 7)

1−
x◦3,r
δ◦r

=
d 〈u◦1〉r
dx◦3,r

−
〈
u′1u
′
3

◦〉
r
− 〈ũ◦1ũ◦3〉r (A 8)

After some manipulation, equation A 1 and equation A 2 can be used to recast equation
A 8 into “+” units

1−
x+3,r

δ+s

(
δs
δr

)
=

d
〈
u+1
〉
r

dx+3,r

(
uτ,s
uτ,r

)(
`r
`s

)
−
〈
u′1u
′
3

+
〉
r

(
uτ,s
uτ,r

)2

−
〈
ũ+1 ũ

+
3

〉
r

(
uτ,s
uτ,r

)2

(A 9)

which can be simplified using equation A 3 to obtain

(1− ε)−
x+3,r

δ+s
=

d
〈
u+1
〉
r

dx+3,r
−
〈
u′1u
′
3

+
〉
r
−
〈
ũ+1 ũ

+
3

〉
r

(A 10)

We evaluate the difference between the viscous-scaled smooth- and rough-wall cases at
equal wall-normal positions, i.e. x+3,s = x+3,r = x+3 , by subtracting equation A 10 from
equation A 7 in order to obtain the momentum balance difference equation

ε = ∆
d
〈
u+1
〉

dx+3
+
〈
ũ+1 ũ

+
3

〉
−∆

〈
u′1u
′
3

+
〉

(A 11)

where the left-hand side term shows the effect of a mean channel half-height mismatch.
If 〈h〉 6= 0 then there is an imbalance. However if |〈h〉| � δs then the imbalance can
be considered negligible. With reference to table 1, the Gaussian surface has a mean
roughness height equal to zero (〈h〉/δ = 0) and, as a result, ε = 0. On the other hand,
the mean roughness heights of the peaks-only surface (〈h〉/δ = 0.01) and the pits-only
surfaces (〈h〉/δ = −0.01) are non-zero and therefore ε 6= 0. However, since |〈h〉| /δ ≈ 0.01
for both the pits- and peaks-only surfaces, the friction Reynolds numbers for these cases
agree to within less than 2% of the Gaussian and smooth-wall cases. Therefore, the
friction Reynolds numbers of all cases in this study are so close that the effects of mean
channel half-height mismatch and the error term ε in equation A 11 can be neglected.
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Garćıa-Mayoral, R. & Jiménez, J. 2011 Hydrodynamic stability and breakdown of the
viscous regime over riblets. J. Fluid Mech. 678, 317–347.

Hama, F. R. 1954 Boundary layer characteristics for smooth and rough surfaces. Trans. Soc.
Nav. Arch. Marine Engrs. 62, 333–358.

Ikeda, T. & Durbin, P. A. 2007 Direct simulations of a rough-wall channel flow. J. Fluid
Mech. 571, 235–263.
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