535 research outputs found

    Multiplicative versus additive noise in multi-state neural networks

    Full text link
    The effects of a variable amount of random dilution of the synaptic couplings in Q-Ising multi-state neural networks with Hebbian learning are examined. A fraction of the couplings is explicitly allowed to be anti-Hebbian. Random dilution represents the dying or pruning of synapses and, hence, a static disruption of the learning process which can be considered as a form of multiplicative noise in the learning rule. Both parallel and sequential updating of the neurons can be treated. Symmetric dilution in the statics of the network is studied using the mean-field theory approach of statistical mechanics. General dilution, including asymmetric pruning of the couplings, is examined using the generating functional (path integral) approach of disordered systems. It is shown that random dilution acts as additive gaussian noise in the Hebbian learning rule with a mean zero and a variance depending on the connectivity of the network and on the symmetry. Furthermore, a scaling factor appears that essentially measures the average amount of anti-Hebbian couplings.Comment: 15 pages, 5 figures, to appear in the proceedings of the Conference on Noise in Complex Systems and Stochastic Dynamics II (SPIE International

    A Multiagent Approach to Qualitative Navigation in Robotics

    Get PDF
    Navigation in unknown unstructured environments is still a difficult open problem in the field of robotics. In this PhD thesis we present a novel approach for robot navigation based on the combination of landmark-based navigation, fuzzy distances and angles representation and multiagent coordination based on a bidding mechanism. The objective has been to have a robust navigation system with orientation sense for unstructured environments using visual information. To achieve such objective we have focused our efforts on two main threads: navigation and mapping methods, and control architectures for autonomous robots. Regarding the navigation and mapping task, we have extended the work presented by Prescott, so that it can be used with fuzzy information about the locations of landmarks in the environment. Together with this extension, we have also developed methods to compute diverting targets, needed by the robot when it gets blocked. Regarding the control architecture, we have proposed a general architecture that uses a bidding mechanism to coordinate a group of systems that control the robot. This mechanism can be used at different levels of the control architecture. In our case, we have used it to coordinate the three systems of the robot (Navigation, Pilot and Vision systems) and also to coordinate the agents that compose the Navigation system itself. Using this bidding mechanism the action actually being executed by the robot is the most valued one at each point in time, so, given that the agents bid rationally, the dynamics of the biddings would lead the robot to execute the necessary actions in order to reach a given target. The advantage of using such mechanism is that there is no need to create a hierarchy, such in the subsumption architecture, but it is dynamically changing depending on the specific situation of the robot and the characteristics of the environment. We have obtained successful results, both on simulation and on real experimentation, showing that the mapping system is capable of building a map of an unknown environment and use this information to move the robot from a starting point to a given target. The experimentation also showed that the bidding mechanism we designed for controlling the robot produces the overall behavior of executing the proper action at each moment in order to reach the target

    Influence of synthesis conditions on properties of green-reduced graphene oxide

    Full text link
    [EN] Green reduction of graphene oxide (GO) was performed using ascorbic acid (AA) in the presence of poly(sodium 4-styrenesulfonate), which resulted in reduced graphene oxide (PSS-rGO) with excellent solubility and stability in water. Large rGO sheets of 4 mu m(2) area and 1.1-nm thickness were obtained. The measurements showed that noncovalent functionalization with PSS molecules prevented rGO from aggregation. The parameters of graphite oxidation process and AA: GO w/w ratio were evaluated, and the obtained results showed that the properties of the reduced material (PSS-rGO) can be tailored by proper selection and adjustment of these parameters.The authors thank the European Commission for their financial support through the project no. NMP3-SL-2010-246073.Pruna, A.; Pullini, D.; Busquets, D. (2013). Influence of synthesis conditions on properties of green-reduced graphene oxide. Journal of Nanoparticle Research. 15(5):1-11. https://doi.org/10.1007/s11051-013-1605-6S111155Acik M, Lee G, Mattevi C et al (2011) The role of oxygen during thermal reduction of graphene oxide studied by infrared absorption spectroscopy. J Phys Chem C 115:1981–19761Akhavan O, Ghaderi E (2012) Escherichia coli bacteria reduce graphene oxide to bactericidal graphene in a self-limiting manner. Carbon 50:1853–1860Akhavan O, Ghaderi E, Esfandiar A (2011) Wrapping bacteria by graphene nanosheets for isolation from environment, reactivation by sonication, and inactivation by near-infrared irradiation. J Phys Chem B 115:6279–6288Akhavan O, Ghaderi E, Aghayee S, Fereydooni Y, Talebi A (2012) The use of a glucose-reduced graphene oxide suspension for photothermal cancer therapy. J Mater Chem 22:13773–13781Bae S, Kim H, Lee Y et al (2010) Roll to- roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 5:574–578Bai H, Xu Y, Zhao L, Li C, Shi G (2009) Non-covalent functionalization of graphene sheets by sulfonated polyaniline. Chem Commun 13:1667–1669Boehm HP (1994) Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon 32:759–769Boukhvalov DW, Katsnelson MI (2008) Modeling of graphite oxide. J Am Chem Soc 130:10697–10701Buchsteiner A, Lerf A, Pieper J (2006) Water dynamics in graphite oxide investigated with neutron scattering. J Phys Chem B 110:22328Choi BG, Park H, Park TJ et al (2010) Solution chemistry of self-assembled graphene nanohybrids for high-performance flexible biosensors. ACS Nano 4:2910–2918Cote LJ, Silva RC, Huang J (2009) Flash reduction and patterning of graphite oxide and its polymer composite. J Am Chem Soc 131:11027–11032Dai B, Fu L, Liao L et al (2011) High-quality single-layer graphene via reparative reduction of graphene oxide. Nano Res 4:434–439Davies MB, Austin J, Partridge DA (1991) Vitamin C: its chemistry and biochemistry. Royal Society of Chemistry, CambridgeElias DC, Nair RR, Mohiuddin TMG, Morozov SV, Blake P, Halsall MP et al (2009) Control of graphene’s properties by reversible hydrogenation: evidence for graphene. Science 23:610–613Fan FRF, Park S, Zhu Y, Ruoff RS, Bard AJ (2009) Electrogenerated chemiluminescence of partially oxidized highly oriented pyrolytic graphite surfaces and of graphene oxide nanoparticles. J Am Chem Soc 131:937–939Fernandez-Merino MJ, Guardia L, Paredes JI, Villar-Rodil S et al (2010) Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions. J Phys Chem C 114:6426–6432Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97:187401–187405Ganguly A, Sharma S, Papakonstantinou P, Hamilton J (2011) Probing the thermal deoxygenation of graphene oxide using high-resolution in situ X-ray-based spectroscopies. J Phys Chem C 115:17009–17019Hancock RD, Viola R (2005) Biosynthesis and catabolism of l-ascorbic acid in plants. Crit Rev Plant Sci 24:167–188Hernandez Y, Nicolosi V, Lotya M et al (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3:563–568Hontoria-Lucas C, Lopez-Peinado AJ, Loepz-Gonzalez JDD et al (1995) Study of oxygen-containing groups in a series of graphite oxides: physical and chemical characterization. Carbon 33:1585–1592Jeong HK, Lee YP, Lahaye RJWE et al (2008) Evidence of graphitic AB stacking order of graphite oxides. J Am Chem Soc 130:1362–1366Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn JH, Kim P, Choi JY, Hong BH (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706–710Kuila T, Bose S, Mishra AK, Khanra P, Kim NH, Lee JH (2012) Chemical functionalization of graphene and its applications. Prog Mater Sci 57:1061–1105Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35:1350–1375Kumar P, Subrahmanyam KS, Rao CNR (2011a) Graphene produced by radiation-induced reduction of graphene oxide. Intl J Nanosci 10:559–566Kumar P, Panchakarla LS, Rao CNR (2011b) Laser-induced unzipping of carbon nanotubes to yield graphene nanoribbons. Nanoscale 3:2127–2129Kumar P, Das B, Chitara B et al (2012) Novel radiation induced properties of graphene and related materials. Macromol Chem Phys 213:1146–1163Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388Li D, Kaner RB (2008) Graphene-based materials. Science 320:1170–1171Li J, Liu CY (2010) Ag/Graphene heterostructures: synthesis, characterization and optical properties. Eur J Inorg Chem 8:1244–1248Li D, Muller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101–105Li X, Cai W, An J et al (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324:1312–1314Maitra U, Matte HSRR, Kumar P, Rao CNR (2012) Strategies for the synthesis of graphene, graphene nanoribbons, nanoscrolls and related materials. Chimia 66:941–948Mei XG, Ouyang JY (2011) Ultrasonication-assisted ultrafast reduction of graphene oxide by zinc powder at room temperature. Carbon 49:5389–5397Mkhoyan K, Contryman A, Silcox J, Stewart D, Eda G, Mattevi C, Miller S, Chhowalla M (2009) Atomic and electronic structure of graphene-oxide. Nano Lett 9:1058–1063Nair RR, Blake P, Grigorenko AN et al (2008) Fine structure constant defines visual transparency of graphene. Science 320:1308Park S, Lee KS, Bozoklu G et al (2008) Graphene oxide papers modified by divalent ions enhancing mechanical properties via chemical cross-linking. ACS Nano 2:572–578Park S, An J, Jung I et al (2009) Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett 9:1593–1597Park HJ, Meyer J, Roth S, Skákalová V (2010) Growth and properties of few-layer graphene prepared by chemical vapor deposition. Carbon 48:1088–1094Park S, An J, Potts JR, Velamakanni A, Murali S, Ruoff RS (2011) Hydrazine-reduction of graphite- and graphene oxide. Carbon 49:3019–3023Patil AJ, Vickery JL, Scott TB, Mann S (2009) Aqueous stabilization and self-assembly of graphene sheets into layered bio-nanocomposites using DNA. Adv Mater 21:3159–3164Stankovich S, Piner RD, Chen X, Wu N, Nguyen SBT, Ruoff RS (2006) Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J Mater Chem 16:155–158Subrahmanyam KS, Panchakarla LS, Govindaraj A, Rao CNR (2009) Simple method of preparing graphene flakes by an arc-discharge method. J Phys Chem C 113:4257–4259Szabó T, Tombacz E, Illes E, Dékány I (2006) Enhanced acidity and pH-dependent surface charge characterization of successively oxidized graphite oxides. Carbon 44:537–545Wu JS, Pisula W, Mullen K (2007) Graphenes as potential material for electronics. Chem Rev 107:718–747Wu H, Zhao WF, Hu HW, Chen GH (2011) One-step in situ ball milling synthesis of polymer-functionalized graphene nanocomposites. J Mater Chem 21:8626–8632Xu Y, Bai H, Lu G, Li C, Shi G (2008) Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J Am Chem Soc 130:5856–5857Yin Z, Wu S, Zhou X et al (2010) Electrochemical deposition of ZnO nanorods on transparent reduced graphene oxide electrodes for hybrid solar cells. Small 6:307–312Zhang L, Liang J, Huang Y, Ma Y, Wang Y, Chen YS (2009) Size-controlled synthesis of graphene oxide sheets on a large scale using chemical exfoliation. Carbon 47:3365–3380Zhang J, Yang H, Shen G, Cheng P, Zhang J, Guo S (2010) Reduction of graphene oxide via l-ascorbic acid. Chem Comm 46:1112–1114Zhou Y, Bao Q, Tang LAL, Zhong Y, Loh KP (2009) Hydrothermal dehydration for the ‘green’ reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties. Chem Mater 21:2950–295

    Stationary states of a spherical Minority Game with ergodicity breaking

    Full text link
    Using generating functional and replica techniques, respectively, we study the dynamics and statics of a spherical Minority Game (MG), which in contrast with a spherical MG previously presented in J.Phys A: Math. Gen. 36 11159 (2003) displays a phase with broken ergodicity and dependence of the macroscopic stationary state on initial conditions. The model thus bears more similarity with the original MG. Still, all order parameters including the volatility can computed in the ergodic phases without making any approximations. We also study the effects of market impact correction on the phase diagram. Finally we discuss a continuous-time version of the model as well as the differences between on-line and batch update rules. Our analytical results are confirmed convincingly by comparison with numerical simulations. In an appendix we extend the analysis of the earlier spherical MG to a model with general time-step, and compare the dynamics and statics of the two spherical models.Comment: 26 pages, 8 figures; typo correcte

    High-Efficiency Electrodeposition of Large Scale ZnO Nanorod Arrays for Thin Transparent Electrodes

    Full text link
    In the present work an effective technique to synthesize large-scale c-axis oriented ZnO nanorod (NR) arrays is presented. The manuscript reports a single-step cathodic electrodeposition, either in aqueous and organic electrolytes, to fill up ultra-thin anodic nanoporous alumina templates. Prior to growing, self-ordered hexagonal array of cylindrical nanopores have been fabricated by anodizing Al thin films previously deposited onto ITOglass substrates. The diameter and the aspect ratio of the vertically aligned nanopores are about 60 nm and 8:1, respectively. The results of this work demonstrate that using dimethyl sulfoxide (DMSO) as an electrolyte leads to a growth more homogeneous in shape and crystallinity, and with 60 deposition efficiency - the highest by now in literature. This fact is most probably due to a better infiltration of the alumina nanopores by this electrolyte. SEM and XRD analysis were employed for the study of morphology and crystalline structure of the obtained ZnO NR. These measurements showed furthermore that ZnO nanorod arrays are uniformly embedded into the hexagonally ordered nanopores of the anodic alumina membrane. DMSO proved to be an optimal electrolyte to obtain single-crystalline ZnO NR arrays, highly transparent in visible light range (80 transmittance). © 2011 The Electrochemical Society.The authors thank for the financial support by the European Commission, DG Research through the program PEOPLE, by the project no. MRTN-CT-2006-035884.Pullini, D.; Pruna, AI.; Zanin, S.; Busquets Mataix, DJ. (2012). High-Efficiency Electrodeposition of Large Scale ZnO Nanorod Arrays for Thin Transparent Electrodes. Journal of The Electrochemical Society. 159(2):45-51. doi:10.1149/2.093202jesS4551159

    Self-recognition and Ca2+-dependent carbohydrate–carbohydrate cell adhesion provide clues to the Cambrian explosion

    Get PDF
    Author Posting. © The Authors, 2009. This is the author's version of the work. It is posted here by permission of Oxford University Press for personal use, not for redistribution. The definitive version was published in Molecular Biology and Evolution 26 (2009): 2551-2561, doi:10.1093/molbev/msp170.The Cambrian explosion of life was a relatively short period ca. 540 million years ago that marked a generalized acceleration in the evolution of most animal phyla, but the trigger of this key biological event remains elusive. Sponges are the oldest extant Precambrian metazoan phylum and thus a valid model to study factors that could have unleashed the rise of multicellular animals. One such factor is the advent of self/non-self recognition systems, which would be evolutionarily beneficial to organisms to prevent germ cell parasitism or the introduction of deleterious mutations resulting from fusion with genetically different individuals. However, the molecules responsible for allorecognition probably evolved gradually before the Cambrian period, and some other (external) factor remains to be identified as the missing triggering event. Sponge cells associate through calcium-dependent, multivalent carbohydrate-carbohydrate interactions of the g200 glycan found on extracellular proteoglycans. Single molecule force spectroscopy analysis of g200-g200 binding indicates that calcium affects the lifetime (+Ca/-Ca: 680 s/3 s) and bond reaction length (+Ca/-Ca: 3.47 Å/2.27 Å). Calculation of mean g200 dissociation times in low and high calcium within the theoretical framework of a cooperative binding model indicates the non-linear and divergent characteristics leading to either disaggregated cells or stable multicellular assemblies, respectively. This fundamental phenomenon can explain a switch from weak to strong adhesion between primitive metazoan cells caused by the well documented rise in ocean calcium levels at the end of Precambrian time. We propose that stronger cell adhesion allowed the integrity of genetically uniform animals composed only of “self” cells, facilitating genetic constitutions to remain within the metazoan individual and be passed down inheritance lines. The Cambrian explosion might have been triggered by the coincidence in time of primitive animals endowed with self/non-self recognition, and of a surge in sea water calcium that increased the binding forces between their calcium-dependent cell adhesion molecules.D.A. and A.K. acknowledge financial support from the Collaborative Research Center SFB 613 from the Deutsche Forschungsgemeinschaft (DFG), and X.F.-B. acknowledges financial support from grants BIO2002-00128, BIO2005-01591, and CSD2006-00012 from the Ministerio de Ciencia y Tecnología, Spain, which included Fondo Europeo de Desarrollo Regional funds, and from grant 2005SGR-00037 from the Generalitat de Catalunya, Spain

    Microplastics and nanoplastics in haemodialysis waters: Emerging threats to be in our radar

    Get PDF
    Microplastics are present in the environment, in drinking water, in human blood and there is evidence of nanoplastics in tap water. The objective of this work was to analyze the possibility of hemodialysis patients being contaminated by micro and nanoplastics (MNPs) during dialysis treatment. The motivation for this investigation is the fact that hemodialysis patients use about 300–600 L of drinking water per week, which may be contaminated by MNPs. A literature review, a field investigation in a London hospital and an estimation of MNPs intake in patients were carried out. The results showed potential points of risk of contamination of patients by MNPs in hemodialysis. It was also estimated that for a filtration efficiency of 99 % for MNPs, the amount of microplastics that can penetrate the kidneys of patients is 0.0021–3768 particles/week. The assessment concludes that hemodialysis patients are at high risk of MNP contamination
    corecore