
UNIVERSITAT POLITÈCNICA DE CATALUNYA
DEPARTAMENT DE LLENGUATGES I SISTEMES INFORM̀ATICS

ARTIFICIAL INTELLIGENCE PhD PROGRAM

DOCTORAL THESIS

A Multiagent Approach
to Qualitative Navigation

in Robotics

Submitted by
Dı́dac Busquets i Font
to obtain the degree of

Doctor in Computer Science

Supervisors:
Dr. Ramon López de Màntaras i Badia (IIIA-CSIC)

Dr. Carles Sierra i Garcia (IIIA-CSIC)

Tutor:
Dr. Mario Martı́n i Muñoz (LSI-UPC)

UPC

Departament de Llenguatges i Sistemes Informàtics

UNIVERSITAT POLITÈCNICA DE CATALUNYA

Institut
d’Investigació

en Intel·ligència
Artificial

Consejo
Superior
de Investigaciones
Cientı́ficas

MONOGRAFIES DE L’INSTITUT D’INVESTIGACIÓ
EN INTEL·LIGÈNCIA ARTIFICIAL

Number 18

Institut d’Investigació
en Intel·ligència Artificial

Consell Superior
d’Investigacions Cientı́fiques

Monografies de l’Institut d’Investigaci ó en Intel·ligència
Artificial

Num. 1 J. Puyol,MILORD II: A Language for Knowledge–Based Systems
Num. 2 J. Levy,The Calculus of Refinements, a Formal Specification Model

Based on Inclusions
Num. 3 Ll. Vila, On Temporal Representation and Reasoning in Knowledge–

Based Systems
Num. 4 M. Domingo,An Expert System Architecture for Identification in Bi-

ology
Num. 5 E. Armengol,A Framework for Integrating Learning and Problem

Solving
Num. 6 J. Ll. Arcos,The Noos Representation Language
Num. 7 J. Larrosa,Algorithms and Heuristics for Total and Partial Constraint

Satisfaction
Num. 8 P. Noriega,Agent Mediated Auctions: The Fishmarket Metaphor
Num. 9 F. Manyà,Proof Procedures for Multiple-Valued Propositional Logics
Num. 10 W. M. Schorlemmer,On Specifying and Reasoning with Special Re-

lations
Num. 11 M. López-Sánchez,Approaches to Map Generation by means of Col-

laborative Autonomous Robots
Num. 12 D. Robertson,Pragmatics in the Synthesis of Logic Programs
Num. 13 P. Faratin,Automated Service Negotiation between Autonomous Com-

putational Agents
Num. 14 J. A. Rodrı́guez,On the Design and Construction of Agent-mediated

Electronis Institutions
Num. 15 T. Alsinet,Logic Programming with Fuzzy Unification and Imprecise

Constants: Possibilistic Semantics and Automated Deduction
Num. 16 A. Zapico,On Axiomatic Foundations for Qualitative Decision The-

ory - A Possibilistic Approach
Num. 17 A. Valls, ClusDM: A multiple criteria decision method for heteroge-

neous data sets
Num. 18 D. Busquets,A Multiagent Approach to Qualitative Navigation in

Robotics
Num. 19 M. Esteva,Electronic Institutions: from specification to development
Num. 20 J. Sabater,ReGreT, a trust and reputation model for multi-agent sys-

tems

A Multiagent Approach to Qualitative
Navigation in Robotics

Dı́dac Busquets Font

Foreword by Ramon López de Màntaras and Carles Sierra

2003 Consell Superior d’Investigacions Cientı́fiques
Institut d’Investigació en Intel·ligència Artificial

Bellaterra, Catalonia, Spain.

Series Editor
Institut d’Investigació en Intel·ligència Artificial
Consell Superior d’Investigacions Cientı́fiques

Foreword by
Ramon López de Màntaras Badia
Carles Sierra Garcia
Institut d’Investigació en Intel·ligència Artificial
Consell Superior d’Investigacions Cientı́fiques

Volume Author
Dı́dac Busquets Font
Institut d’Investigació en Intel·ligència Artificial
Consell Superior d’Investigacions Cientı́fiques

Institut d’Investigació
en Intel·ligència Artificial

Consell Superior
d’Investigacions Cientı́fiques

c© 2003 by Dı́dac Busquets Font
NIPO: 403-03-080-0
ISBN: 84-00-08155-2
Dip. Legal: B.43077-2003

All rights reserved. No part of this book may be reproduced inany form or by any elec-
tronic or mechanical means (including photocopying, recording, or information storage
and retrieval) without permission in writing from the publisher.
Ordering Information: Text orders should be addressed to the Library of the IIIA,
Institut d’Investigació en Intel·ligència Artificial, Campus de la Universitat Autònoma
de Barcelona, 08193 Bellaterra, Barcelona, Spain.

Contents

Foreword xi

Acknowledgments xiii

Abstract xv

Resum xvii

1 Introduction 1
1.1 Overview and Motivation . 1
1.2 Contributions . 6
1.3 Publications . 7
1.4 Structure of the Thesis . 8

2 Related Work and State-of-the-art 11
2.1 Control Architectures . 11

2.1.1 Hierarchical Architectures . 12
2.1.2 Behavior-based Robotics . 13
2.1.3 Hybrid Architectures . 17
2.1.4 Bidding Mechanisms . 18

2.2 Mapping and Navigation . 18
2.2.1 Localization . 19
2.2.2 Map Representation . 20

3 Mapping and Navigation 25
3.1 Beta-coefficient System . 26
3.2 Extending Prescott’s System: Moving to Fuzzy 28

3.2.1 Fuzzy Numbers and Fuzzy Operations 28
3.2.2 Fuzzy Beta-coefficient System 29

3.3 Building the Map . 29
3.4 Navigating Through the Environment 34
3.5 Future Work . 36

v

4 The Robot Architecture 37
4.1 Pilot System . 40
4.2 Vision System . 41

4.2.1 Visual Memory . 41
4.3 Navigation System . 42
4.4 The Group of Bidding Agents . 43

4.4.1 Map Manager . 44
4.4.2 Target Tracker . 44
4.4.3 Risk Manager . 45
4.4.4 Rescuer . 47
4.4.5 Communicator . 48
4.4.6 Agents code schemas . 49

4.5 Future Work . 56

5 Simulation Results 57
5.1 The Simulated System . 57
5.2 Multiagent Navigation System Simulation 59
5.3 Reinforcement Learning . 62

5.3.1 The Task to be Learned . 64
5.3.2 The Reinforcement Learning Algorithm64
5.3.3 Experimentation . 69
5.3.4 Future Work . 71

5.4 Evolving the Multiagent Navigation System 72
5.4.1 Navigation Tasks . 72
5.4.2 The Agents . 72
5.4.3 The GA algorithm . 74
5.4.4 Results . 77
5.4.5 Future Work . 80

6 Real Experiments 83
6.1 The Robot . 83
6.2 Vision . 84
6.3 Graphical Interface . 89
6.4 Goals of the Experimentation .89
6.5 The Real Scenarios . 91
6.6 Experimentation Results . 92
6.7 A Trial Example . 96
6.8 Discussion and Future Work . 103

7 Conclusions and Future Work 107
7.1 Revisiting the Objectives .107
7.2 Contributions . 108
7.3 Future Work . 110

7.3.1 Mapping and Navigation . 110
7.3.2 Robot Architecture and Multiagent Navigation System. 110
7.3.3 Reinforcement Learning . 111

vi

7.3.4 Genetic Algorithm . 112
7.3.5 Real experimentation . 112
7.3.6 Case Based Reasoning . 113

Bibliography 115

vii

List of Figures

2.1 Control architectures’ spectrum 12
2.2 Sense-plan-act model . 12
2.3 Single behavior diagram . 13
2.4 Behavior-based architecture .. 13
2.5 Example of a control system using the subsumption architecture 14
2.6 Motor-schemas architecture .. 16
2.7 Three layers hybrid architecture 18

3.1 Possible landmark configuration and points of view 26
3.2 Landmark configuration, network and topological map 28
3.3 Landmark imprecision computation 30
3.4 Region collinearity . 31
3.5 Region connectivity . 31
3.6 Convex hull covering . 31
3.7 Region overlapping . 32
3.8 Adding a landmark inside an existing region 33
3.9 Adding a landmark outside any existing region 33
3.10 Region optimization . 34
3.11 Diverting target computation .. . 35
3.12 Enlarging the map with virtual regions 36

4.1 General bidding coordination architecture 38
4.2 Specific robot architecture .39
4.3 Growing obstacles . 40
4.4 Multiagent view of the navigation system 43
4.5 Target Tracker’s bidding functions 46
4.6 Risk Manager’s look bidding functions 47

5.1 Robot’s path from starting point to the target 60
5.2 Computing diverting targets .61
5.3 Associated map . 61
5.4 Modified navigation system, with the new agent 63
5.5 Division of environment in sectors 66
5.6 Number of successful test trials as a function of the amount of training . 70
5.7 Cluster C1 . 73

ix

5.8 Cluster C2 . 73
5.9 Chromosome with the set of parameters 76
5.10 Fitness of the fittest individual along generations (clusterC1) 78
5.11 Average fitness of the population along generations (clusterC1) 78
5.12 Mahalanobis diversity (clusterC1) . 78
5.13 Fitness of the fittest individual along generations (clusterC2) 79
5.14 Average fitness of the population along generations (clusterC2) 79
5.15 Mahalanobis diversity (clusterC2) . 79
5.16 Going to clusterC1 . 81
5.17 Going to clusterC2 . 81

6.1 MarkFinder pictures . 84
6.2 Communication with the robot . 85
6.3 Landmark details . 86
6.4 Landmark recognition process .87
6.5 Larger target landmark label .88
6.6 Graphical control interface .. 90
6.7 Experimentation scenarios .93
6.8 Maps of 2 different scenarios of scenario class 3 95
6.9 Path followed during the trial .. 97
6.10 Map created during the trial .. 98
6.11 Map created during the trial (cont.) 99
6.12 Moving bids . 100
6.13 Looking bids . 101
6.14 Target’s location imprecision and sources of computation 104

x

Foreword

Working with real systems is always a challenging task for anArtificial Intelligence
Ph.D. student. They require a surplus of effort over those problems that are comfortably
simulated by a computer program. This book explains one of these challenging tasks
successfully led to an end by Dı́dac Busquets. An enthusiastof difficulties.

Having autonomous robots solving complex problems is part of the original dream
of artificial intelligence with an amazing potential for practical and useful applications.
Programming such intelligent robots is clearly not an easy task. Dı́dac Busquets has
faced the problem of programming a robot to autonomously navigate towards a pre-
established target. The difficulty being on using just a camera to guide the decision
making process. Not an easy problem because the only requirement is that the target is
visible from the starting position of the robot but can easily disappear from the field of
view when the robot starts moving. Dı́dac Busquets has used several AI techniques in
order to tackle the problem: artificial vision, genetic algorithms, reinforcement learn-
ing, multi-agent systems, and fuzzy reasoning. He has proposed a general multi-agent
architecture to structure and coordinate such complex programs and has effectively im-
plemented an instance of this architecture. Dı́dac Busquets has tested his approach
initially on simulation and then on a real robot. The resultsare excellent. From a sci-
entific perspective the book contains very interesting ideas on how all those techniques
can be combined in order to model the sense of orientation that animals exhibit. From
an engineering perspective it contains a way to co-ordinatemultiple-decision making
entities into a coherent whole. Overall, a very interestingpiece of work.

Dı́dac’s qualities helped him to successfully complete hisPh.D.: a perseverant char-
acter to overcome the difficulties and a high dose of patienceto do the experimental
work. He has started a robotics research line within the IIIAthat will certainly be the
seed of future challenges for all of us. Enjoy the book.

Bellaterra, October 2003

Ramon López de Màntaras Badia
Carles Sierra Garcia

Institut d’Investigació en Intel·ligència Artificial
Consell Superior d’Investigacions Cientı́fiques

xi

Acknowledgments

Since I started my PhD adventure, four years ago, I have received help, advice and
support from many people, to all of whom I am really thankful.

First of all, I am really grateful to my supervisors, Ramon L´opez de Màntaras and
Carles Sierra, without whom I would have never finished this thesis. Actually, I would
have not even started it!

I am also thankful to the Institut d’Investigació en Intel·ligència Artificial, my sec-
ond home (or was it the first?) during these last four years, toall its staff members and
specially the rest of PhD students with whom we have had greattimes.

I also thank Thomas Dietterich for his help and comments, andalso for being such
an excellent host in my visits to Corvallis.

Jose Sánchez and Madhur Ambastha deserve special thanks for their help on the
development of the vision system and the genetic algorithm approach, respectively.

I am also really grateful to my family, who has supported and helped me (and also
homed and fed) during these years.

And last, but not least, thanks to all of my friends, to whom I have tried to explain
what has kept me so busy during this time. Although they have not helped on the
technical issues of the thesis, they have always been there to remind me that a PhD
is not incompatible with going out and having fun (some of them reminded it quite
often!). To name some of them (in friendship antiquity order): Roger, Fèlix, Cris,
Meri(bad), Glòria, Sandra, Albert, Lluc (thanks for pointing out the Czech origin of the
word “robot”), Meri(jem), Dic... Thank you all.

This research has been partially supported by the Spanish MCYT project ARGOS
(DPI2000-1352-C02-02), CICYT project number TAP97-1209,CIRIT project CeR-
TAP and the US-Spain Joint Commission for Scientific and Technological Coopera-
tion. During the four years of my research I have enjoyed a CIRIT doctoral scholarship
(2000FI-00191) from Generalitat de Catalunya.

xiii

Abstract

Navigation in unknown unstructured environments is still adifficult open problem in the
field of robotics. In this PhD thesis we present a novel approach for robot navigation
based on the combination of landmark-based navigation, fuzzy distances and angles
representation and multiagent coordination based on a bidding mechanism. The objec-
tive has been to have a robust navigation system with orientation sense for unstructured
environments using visual information.

To achieve such objective we have focused our efforts on two main threads: navi-
gation and mapping methods, and control architectures for autonomous robots.

Regarding the navigation and mapping task, we have extendedthe work presented
by Prescott, so that it can be used with fuzzy information about the locations of land-
marks in the environment. Together with this extension, we have also developed meth-
ods to compute diverting targets, needed by the robot when itgets blocked.

Regarding the control architecture, we have proposed a general architecture that
uses a bidding mechanism to coordinate a group of systems that control the robot. This
mechanism can be used at different levels of the control architecture. In our case,
we have used it to coordinate the three systems of the robot (Navigation, Pilot and
Vision systems) and also to coordinate the agents that compose the Navigation system
itself. Using this bidding mechanism the action actually being executed by the robot
is the most valued one at each point in time, so, given that theagents bid rationally,
the dynamics of the biddings would lead the robot to execute the necessary actions in
order to reach a given target. The advantage of using such mechanism is that there is no
need to create a hierarchy, such in the subsumption architecture, but it is dynamically
changing depending on the specific situation of the robot andthe characteristics of the
environment.

We have obtained successful results, both on simulation andon real experimenta-
tion, showing that the mapping system is capable of buildinga map of an unknown
environment and use this information to move the robot from astarting point to a given
target. The experimentation also showed that the bidding mechanism we designed for
controlling the robot produces the overall behavior of executing the proper action at
each moment in order to reach the target.

xv

Resum

La navegació en entorns desconeguts no estructurats és encara un problema obert en el
camp de la robòtica. En aquesta tesi presentem una aproximació per a la navegació de
robots basada en la combinació de navegació basada en landmarks, representació fuzzy
d’angles i distàncies i una coordinació multiagent basada en un mecanisme de dites.
L’objectiu de la tesi ha sigut desenvolupar un sistema de navegació robust amb sentit de
l’orientació per a entorns no estructurats usant informació visual.

Per tal d’assolir aquest objectiu, hem centrat els nostres esforços en dues lı́nies
d’investigació: mètodes de navegació i construcció demapes, i arquitectures de control
per a robots autònoms.

Pel que fa als mètodes de navegació i construcció de mapes, hem extès el treball
presentat per Prescott per tal que es pugui utilitzar amb informació fuzzy sobre la lo-
calitazció dels landmarks. A part d’aquesta extensió, també hem desenvolupat mètodes
per a calcular objectius alternatius, necessaris quan el robot troba el camı́ bloquejat.

Pel que fa a l’arquitectura de control, hem proposat una arquitectura general que
utilitza un mecanisme de dites per a coordinar un grup de sistemes que controlen el
robot. Aquest mecanisme pot ser usat en diferents nivells del’arquitectura. En el
nostre cas l’hem usat per a coordinar els tres sistemes del robot (Navegació, Pilot i
Visió), i també per a coordinar els agents que composen el sistema de Navegació. Usant
aquest mecanisme de dites, l’acció que executa el robot ésla més ben valorada en
cada instant. D’aquesta manera, i si els agents fan les ditesd’una manera racional, la
dinàmica de les dites porta el robot a executar les accions necessàries per tal d’arribar
a l’objectiu indicat. L’avantatge d’utilitzar aquest mecanisme és que no cal imposar
una jerarquia entre els sistemes, com passa en l’arquitectura de subsumpció, si no que
aquesta jerarquia canvia dinàmicament, depenent de la situació en què es troba el robot
i les caracterı́stiques de l’entorn.

Hem obtingut resultats satisfactoris, tant en simulació com en experimentació amb
un robot real, que confirmen que el sistema de navegació és capaç de construir un mapa
d’un entorn desconegut i utlitzar-lo per a moure el robot d’una posició inicial a un
objectiu donat. L’experimentació també ha mostrat que elsistema de coordinació basat
en dites que hem dissenyat produeix el comportament global d’executar les accions
necessàries en cada instant per tal d’arribar a l’objectiu.

xvii

Chapter 1

Introduction

robot
From translation of 1920 play “R.U.R.” (“Rossum’s Universal Robots”), by Karel
Čapek (1890-1938), from Czechrobota “forced labor, drudgery”, fromrobotiti
“to work, drudge”, from Old Church Slavonicrabota “servitude”, from rabu
“slave”, from a Slavic stem related to Germanarbeit “work”.

1.1 Overview and Motivation

Since the late 1960s, with the development of SRI’s Shakey robot [54], artificial intel-
ligence (AI) and mobile robotics have been closely related.A mobile robot must be
autonomous, deal with uncertainty, plan and decide what to do, react to unpredicted
situations, that is, it has to overcome really hard problemsif we want it to act in an in-
telligent and autonomous way. Thus, mobile robots pose one of the biggest challenges
for AI.

Although impressive successes have been obtained since Shakey, it cannot still be
said that the objective of having truly autonomous robots has been achieved. One of the
fields in which there is still much to do is on mobile robotics for unknown environments.

Robotic systems for navigating through unknown environments are a focus of re-
search in many application areas including, among others, spacecraft (rovers for Mars
and the Moon) and search and rescue robotics. These systems have to perform very
different tasks, from looking for rocks, picking them up andanalyzing them, to assess-
ing damages or looking for survivors after a natural disaster or accident has happened.
However, they all share two key characteristics: first, theyhave to achieve their goals
autonomously, and second, they have tonavigate in unknown environments.

The first key point in these applications,autonomy, arises from the impossibility
of always having a human operator controlling the robotic system. Although the ideal
situation would be to have an expert operator controlling the robot, the necessary condi-
tions cannot always be met. These conditions are usually related to the communication
between the operator and the robot. In many situations it is very difficult to guarantee
that the communication link will be robust, in terms of speedand availability. A clear

1

2 Chapter 1. Introduction

example is found on planetary exploration missions. A majorproblem in such missions
is the distance between the robot and the control station (usually located on the Earth);
the time of sending an order to the robot and having it executed can be in the order of
minutes. In the case a fast reaction were needed (changing the trajectory of the robot,
selecting a new scientific target that might be more relevantto the mission, etc.), this
time would not be acceptable at all. Another disadvantage ofdepending on external
agents (be it a human or any other device — e.g. a GPS device forlocalisation) is that
the robot can get blocked if any of these agents providing basic information for accom-
plishing the task crashes. This would leave the robot with nomeans to continue with
its mission. Therefore, all the decisions should be taken on-board, without having to
exchange commands or information with any external agent, or at least, make this ex-
change minimal, such as sending only information about taskinitialisation (e.g. target
selection, task description, etc.).

The other important point for such applications isnavigation. The robot must be
able to start in an unknown location and navigate to a desiredtarget. Navigation in un-
known unstructured environments is still a difficult open problem in the field of robotics.
The first difficulty of such an environment is that there is no apriori knowledge about it,
and therefore a map can only be built while exploring. Secondly, unstructured environ-
ments are characterized, precisely, by the lack of structure among the different objects
of the world. This is usually the case for outdoor environments. On the other hand, in
structured environments, such as offices, buildings, etc. many suppositions about their
structure can be done. For instance, walls and corridors arestraight, they are usually
orthogonal, most of the doors have the same size, etc. These characteristics are very
helpful when building a map of the environment, as its structure can be inferred without
the need of sensing the whole environment. Contrarily, in unstructured environments
such suppositions do not hold, so the robot can only rely on the information it is able to
gather from its sensors. This makes the task of map building and navigating even more
difficult.

This research work is part of a larger robotics project. Another partner (IRI1) in
the project is building a six legged robot with on board cameras for outdoor landmark
recognition. The goal of the project is to have a completely autonomous robot capable
of navigating in outdoor unknown environments. A human operator will select a target
using the visual information received from the robot’s camera, and the robot will have
to reach it without any intervention of the operator. The robot could also have an im-
age or description of the target, so the human intervention would not even be needed
for selecting the target. A first milestone for achieving thefinal goal of the project is
to develop a navigation system for indoor unknown unstructured environments for a
wheeled robot. Moreover, the environments of this first stage are composed of easily
recognizable landmarks, since the vision system for outdoors is not yet available.

We propose a robot architecture to accomplish this first milestone. The approach
used and the results obtained are the subject of this thesis.The robot architecture is
composed of three systems: thePilot system, theVision system and theNavigation
system. Each system competes for the two available resources: motion control (direc-
tion of movement) and camera control (direction of gaze). The three systems have the

1Institut de Robòtica i Informàtica Industrial, http://www.iri.csic.es

1.1. Overview and Motivation 3

following responsibilities. The Pilot is responsible for all motions of the robot. It se-
lects these motions in order to carry out commands from the Navigation system and,
independently, to avoid obstacles. The Vision system is responsible for identifying and
tracking landmarks (including the target landmark). Finally, the Navigation system is
responsible for choosing higher-level decisions in order to move the robot to a specified
target. This requires requesting the Vision system to identify and track landmarks (in
order to build a map of the environment) and requesting the Pilot to move the robot in
various directions in order to reach the goal position or some intermediate target.

From the brief description of the robot architecture given above, it can be observed
that the three systems mustcooperate andcompete. They must cooperate because they
need one another in order to achieve the overall task of reaching the target position. But
at the same time they are competing for motion and camera control.

The Navigation system is implemented as a multiagent system, where each agent
is competent in a specific task. Depending on its responsibilities and the information
received from other agents, each agent proposes which action the Navigation system
should take. Again, we find that the agents must cooperate, since an isolated agent is
not capable of moving the robot to the target, but they also compete, because different
agents want to perform different actions.

The problem of cooperation and competition between different agents is very com-
mon in robotics, andBehavior-based Robotics[3] addresses exactly this issue. This
approach to robotic systems deals with coordinating, or arbitrating, different behaviors
sending requests for actions, usually incompatible with each other, to a robot. The role
of the coordination is to select a single action command thatwill be sent to the robot.
When this action is a selection of one of the behaviors’ requests, we talk aboutcom-
petitivecoordination, whereas if the action is a mix of several behaviors’ requests, we
talk aboutcooperativecoordination. In our architecture, each agent plays the role of a
behavior, and there is an additional agent playing the role of coordinator.

For both the overall robot system and the Navigation system,we propose the use of
a new competitive coordination system based on abidding mechanism. In the overall
robot system, the Navigation and the Pilot systems generatebids for the services offered
by the Pilot and Vision systems. These services are to move the robot toward a given
direction, and to move the camera and identify the landmarksfound on its view-field,
respectively. The service actually executed by each systemdepends on the winning bid
at each point in time. Similarly, in the Navigation system, each agent bids for the action
it wants the robot to perform. These bids are sent to a specialagent that gathers all bids
and determines the winning action. The selected action is then sent as the Navigation
system’s bid for the services of the Vision and Pilot systems.

The architecture just described above is actually an instantiation of a general co-
ordination architecture we have developed. In this architecture there are two types of
systems:executive systemsanddeliberative systems. Executive systems have access
to the sensors and actuators of the robot. These systems offer services for using the
actuators to the rest of the systems (either executive or deliberative) and also provide
information gathered from the sensors. On the other hand, deliberative systems take
higher-level decisions and require the services offered bythe executive systems in or-
der to carry out the task assigned to the robot. Although we differentiate between these

4 Chapter 1. Introduction

two types of systems, the architecture is not hierarchical,and coordination is made at
a single level involving all the systems. This coordinationis based on a simple mech-
anism:bidding. Deliberative systems always bid for the services offered by executive
systems, since this is the only way to have their decisions executed. Executive systems
that only offer services do not bid. However, those executive systems that require ser-
vices from any executive system (including themselves) must also bid for them. The
systems bid according to the internal expected utility associated to the provisioning of
a service. A coordinator receives these biddings and decides which service each of the
executive systems has to engage on. In the instantiation forour navigation problem,
there is a deliberative system, the Navigation system, one executive system that bids,
the Pilot system, and one executive system that only offers services, the Vision system.

To navigate in an unknown environment, the robot must build amap. Existing ap-
proaches assume that an appropriately detailed and accurate metric map can be obtained
through sensing the environment. However, most of these approaches rely on odometry
sensors, which can be very imprecise, due to the wheels or legs slipping, and lead to
many errors that grow as the robot moves.

Our approach considers using only visual information. The advantage of using
visual information is that it is independent of any past action the robot may have per-
formed, which is not the case for odometry. The robot must be equipped with a robust
vision system capable of recognising landmarks, and use them for mapping and navi-
gation tasks. The specific scenario that we are studying assumes that there is a target
landmark that the robot is able to recognize visually. The target is visible from the
robot’s initial location (so that the human operator can select it), but it may subse-
quently be occluded by intervening objects. The challenge for the robot is to acquire
enough information about the environment (locations of other landmarks and obstacles)
so that it can move along a path from the starting location to the target.

But even vision-based navigation approaches assume unrealistically accurate dis-
tance and direction information between the robot and the landmarks. We propose a
fuzzy set based approach that assumes only very rough visionestimation of the dis-
tances and, therefore, does not rely on any localisation device.

The main goal of our research is to design a robust vision-based navigation system
for unknown unstructured environments. In particular, we want to provide the robot
with orientation sense, similar to that found in humans or animals. The rationale of the
orientation sense is that the robot does not need to know the exact route from its starting
point to the target’s location, but it uses landmarks as references to find its way to the
target. To make a parallel with humans, when giving directions for going somewhere
in our city, no one gives exact distances, turning angles, etc., but gives approximate
distances, and more important, reference points (distinctive places such as buildings,
squares, etc.) that help us getting to the destination. In our approach, this orientation
sense is realized by the use oflandmark-based navigation, topological mappingand
qualitative computationof landmark locations. We give a brief definition of each of
these three concepts:

• Landmark-based navigation: A landmark is a visually salient object of the envi-
ronment the robot is able to identify. Other navigation approaches that do not use
vision systems define a landmark as a set of features the robotcan detect with its

1.1. Overview and Motivation 5

sensors (usually sonar or laser readings). As the robot explores the environment,
it stores the detected landmarks on a map. When the robot needs to locate itself
on the map, it can do it by matching the detected landmarks with the landmarks
already stored on the map. This approach avoids requiring odometry as the main
information source for navigating and building maps.

• Topological mapping: this approach to map building has a close relationship with
landmark-based navigation. A topological map is usually a graph, where nodes
represent landmarks and arcs represent paths or motion instructions for going
from one landmark to another. The advantage of this approachis that there is no
need for building accurate geometric maps. Storing the topological relationships
among the landmarks in the environment is enough.

• Qualitative computation: we use the term “qualitative” in the sense that we do
not need to work with exact distance or angle information; wecan deal with
some imprecision about it. More specifically, we deal with itby means of fuzzy
numbers and fuzzy arithmetic. Thus, when we talk about qualitatively computing
the location of a landmark, it means that we are taking into account the possible
imprecision about its location.

Our map representation, however, is slightly different from the one given above.
The map is a labeled graph whose nodes, instead of representing isolated landmarks,
represent triangular shaped regions delimited by groups ofthree non-collinear land-
marks, and whose arcs represent the adjacency between regions, that is, if two regions
share two landmarks, the corresponding nodes are connectedby an arc. The arcs of
the graph are labeled with costs that reflect the easiness of the path between the two
corresponding regions. A blocked path would have an infinitecost, whereas a flat, hard
paved path would have a cost close to zero. Since the map is notgiven, but built while
the robot moves, these costs can only be assigned after the robot has moved (or tried
to move) along the path connecting the two regions. Althoughthe adjacency of nodes
in our graph also represents adjacency of topological places, the arcs contain only cost
information, not instructions on how to get from one place toanother. But, actually,
this information is not missing, it is implicit in the adjacency of regions. Given that
two nodes are adjacent only if their regions share two landmarks, it is clear that to go
from one region to another the robot has to cross the edge formed by the two common
landmarks, unless there is a long obstacle blocking this path.

Although this topological map would be sufficient for carrying out navigational
tasks, we also provide the robot with the capability of storing the spatial relation-
ships among landmarks. To realize this capability, we have extended Prescott’s beta-
coefficients system [55]. Prescott’s model stores the relationships among the landmarks
in the environment. The location of a landmark is encoded based on the relative loca-
tions (headings and distances) of three other landmarks. This relationship is unique and
invariant to viewpoint. Once this relationship has been stored, the location of each land-
mark can be computed from the locations of the three landmarks encoding it, no matter
where the robot is located, as long as the robot can compute the heading and distance
to each of the three landmarks. As the robot explores the environment, it stores the re-
lationships among the landmarks it sees. This creates a network of relationships among

6 Chapter 1. Introduction

the landmarks in the environment. If this network is sufficiently-richly connected, then
it provides a computational map of the environment. Given the headings and distances
to a subset of currently-visible landmarks, the network allows us to compute the loca-
tions of all of the remaining landmarks, even if they are currently not visible from the
robot. Prescott assumed that the robot could have the exact distances and headings to
the landmarks, but as we mentioned previously, we need to deal with the imprecision of
the real world. To deal with it, we have extended the model using fuzzy numbers and
fuzzy arithmetic. With this extension, if the target is everlost during the navigation,
the robot will compute its location with respect to a set of previously seen landmarks
whose spatial relation with the target is qualitatively computed, both in terms of fuzzy
distance and direction.

We have implemented the overall architecture and the Navigation system and first
tested it over a simulator. After obtaining promising results on simulation, we have
implemented the algorithm on a wheeled robot and tested it onreal environments.

Although the tuning of our system was carried out through theexperimentation
with the real robot, we also employed simulation to apply machine learning techniques
in order to improve the performance of the system. In particular, we have applied
Reinforcement Learning and Genetic Algorithms. We have used Reinforcement Learn-
ing to have the system learn to use the camera only when appropriate. The camera is
a very expensive resource, and it has also a very high demand (the Pilot and several
agents compete for its control). Since manual tuning of the parameters controlling the
agents’ behaviors is very difficult, and the problem we are trying to solve is a quanti-
tative trade-off, Reinforcement Learning is found to be themost appropriate technique
to use, as its main goal is to maximize expected reward. We have obtained good results
that show the feasibility of applying Reinforcement Learning to improve our system.
Nonetheless, we still need further experimentation and tuning of the learning algorithm,
in order to integrate the learned policy into the multiagentsystem. In parallel, we have
used a Genetic Algorithm to tune the different parameters ofthe agents. The tuning of
these parameters cannot be done manually, neither can it be done using Reinforcement
Learning. Therefore, we have chosen to use a genetic algorithm approach.

1.2 Contributions

The objective of the research carried out during the completion of this PhD thesis has
been to accomplish the first milestone of the above mentionedproject, that is, develop-
ing a navigation system for indoor unknown unstructured environments for a wheeled
robot. More precisely, we have focused on the Navigation system and on the overall
robot architecture. However, we have also had to implement simple versions of the
Pilot and Vision systems in order to realize and test the Navigation system.

As it may have already been noticed, this work has two main research threads: the
control architecture and themapping and navigation method.

Regarding thecontrol architecture, we have proposed a general coordination archi-
tecture that uses a bidding mechanism for coordinating a group of systems (and agents)
that control a robot. This mechanism can be used at differentlevels of the control ar-
chitecture. In our case, we have used it to coordinate two of the systems of the robot

1.3. Publications 7

(Navigation and Pilot systems) and also to coordinate the agents that compose the Nav-
igation system itself. Moreover, the multiagent view of theNavigation system could
also be applied to other systems, having a multiagent Pilot or a multiagent Vision sys-
tem. Using this bidding mechanism, the action actually being executed by the robot
is the most urgent one at each point in time, and thus, if the agents bid rationally, the
dynamics of the biddings would lead the robot to execute the necessary actions in or-
der to reach a given target. An advantage of using such mechanism is that there is no
need to create a hierarchy, such as in the subsumption architecture, but it is dynamically
changing depending on the specific situation of the robot andthe characteristics of the
environment. A second advantage is that its modular view conforms an extensible ar-
chitecture. To extend this architecture with a new capability we would just have to plug
in a new system (or agent).

Regarding themapping and navigation method, we have extended the work pre-
sented by Prescott [55], so that it can be used with fuzzy information about the locations
of landmarks in the environment. This is of great importancewhen working with real
robots, as it is impossible to avoid dealing with the imprecision of real world envi-
ronments. Together with this extension, we have also developed methods that permit
computing diverting targets, needed by the robot when thereis no clear path to the goal.

1.3 Publications

The publications related with this research that have been published as journal articles
or in conference proceedings are the following:

• C. Sierra, R. López de Màntaras and D. Busquets. Multiagent bidding mecha-
nisms for robot qualitative navigation.Lecture Notes in Computer Science (Pro-
ceedings ATAL’00), vol. 1986, pages 198–212, Springer, Verlag, 2001.

• D. Busquets, R. López de Màntaras and C. Sierra. A robust MAS coordination
mechanism for action selection.Proceedings of 2001 AAAI Spring Symposium,
Stanford, CA. Robust Autonomy Serie, pages 38–40, 2001.

• D. Busquets, R. López de Màntaras, C. Sierra and T.G. Dietterich. Reinforce-
ment Learning for Landmark-based Robot Navigation.Proceedings of the First
International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2002), pages 841–842. ACM press, 2002.

• T.G. Dietterich, D. Busquets, R. López de Màntaras and C. Sierra. Action Refine-
ment in Reinforcement Learning by Probability Smoothing.Proceedings of the
19th International Conference on Machine Learning (ICML’02), pages 107–114,
2002.

• D. Busquets, T.G. Dietterich, R. López de Màntaras and C. Sierra. A multi-agent
architecture integrating learning and fuzzy techniques for landmark-based robot
navigation. Topics in Artificial Intelligence. Lecture Notes in Artificial Intelli-
gence (Proceedings of CCIA’02), vol. 2504, pages 269–281, Springer, Verlag,
2002.

8 Chapter 1. Introduction

• D. Busquets, C. Sierra and R. López de Màntaras. A multi-agent approach to
fuzzy landmark-based navigation.Journal of Multiple-Valued Logic and Soft
Computing, vol. 9, pages 195–220, Old City Publishing, 2003.

• D. Busquets, C. Sierra and R. López de Màntaras. A Multi-agent approach to
qualitative landmark-based navigation.Autonomous Robots, vol. 15, pages 129–
153, Kluwer Academic Publishers, 2003.

1.4 Structure of the Thesis

This PhD thesis report is organized as follows:

Chapter 1. Introduction

This chapter gives an overview of this PhD thesis, its motivations, objectives and
its main contributions. It also gives a list of the publications originated from the
research carried out during the completion of the thesis.

Chapter 2. Related work and state-of-the-art

This chapter is devoted to relevant related work and state-of-the-art on the field of
autonomous robots for unknown unstructured environments.The relevant work
has been divided in two parts, one for each main thread of research of the thesis:
control architectures, and mapping and navigation methods. The relevant work
concerning control architectures gives an overview of the different approaches on
autonomous robots control, focusing on the behavior-basedapproach. Regarding
the mapping methods, we review and compare the two main approaches for map
building, the metric one and the topological one. A comparison between two dif-
ferent localisation approaches (landmark-based localisation and model matching)
is also given.

Chapter 3. Mapping and Navigation

In this chapter we firstly describe Prescott’s model for storing spatial relationships
among the landmarks of the environment. After that, we describe how we have
extended this model for dealing with imprecise informationabout the location of
the landmarks. We also present the algorithm for building a topological map of
the environment and how it is used to compute diverting targets, needed by the
robot when it is blocked.

Chapter 4. The Robot Architecture

In this chapter a general coordination architecture based on a bidding mechanism
is presented. We also present the particular instantiationof the general architec-
ture that we have used to solve the navigation problem. A detailed description of
the multiagent Navigation system is also given in this chapter.

1.4. Structure of the Thesis 9

Chapter 5. Simulation Results

In this chapter the results of the simulated experiments arepresented. These ex-
periments include the testing of our architecture and the application of Machine
Learning techniques in order to improve the performance of the system. In partic-
ular, we present the application of Reinforcement Learning, which we have used
to make the system learn how to appropriately use the camera,and an application
of Genetic Algorithms, used to tune some of the parameters ofthe agents of the
Navigation system.

Chapter 6. Real Experiments

This chapter is devoted to present the results of the experiments on real envi-
ronments with a real robot. Firstly, the wheeled robot platform and a simple
vision system used for the real environments experiments are described. Then,
we describe the different scenarios in which the experiments have been carried
out. Finally, the results of the experimentation in such scenarios are given and
discussed.

Chapter 7. Conclusions and Future Work

In this chapter, we summarize the main contributions of the thesis, and point out
some open problems and future research perspectives that weplan to tackle in the
near future.

Chapter 2

Related Work and
State-of-the-art

In this chapter we review relevant related work and the state-of-the-art on the field of
autonomous robotics. We have divided it in two sections, onefor each main thread of
our research: Control Architectures and Mapping and Navigation.

2.1 Control Architectures

A mobile robot working in unknown environments has to be ableto perceive the world,
reason about it, and act consequently in order to achieve itsgoals. The way in which
this process is done is defined by the robot’s control architecture. Many approaches for
control architectures have been developed, and there also exist many definitions of what
a control architecture is:

“Robotic architecture is the discipline devoted to the design of highly specific and
individual robots from a collection of common software building blocks.”– Adaptation
of Stone’s [62] definition of computer architecture.

“ [an architecture refers to] the abstract design of a class of agents: the set of
structural components in which perception, reasoning, andaction occur; the specific
functionality and interface of each component, and the interconnection topology be-
tween components.”– Hayes-Roth [30].

“An architecture provides a principled way of organizing a control system. How-
ever, in addition to providing structure, it imposes constraints on the way the control
problem can be solved.”– Mataric [48].

“An architecture is a description of how a system is constructed from basic compo-
nents and how these components fit together to form the whole.” – James Albus, at the
1995 AAAI Spring Symposium.

The main difference between the architectures proposed in the past years relies on
whether they are more deliberative or more reactive. Figure2.1 depicts the spectrum of
control architectures.

11

12 Chapter 2. Related Work and State-of-the-art

Representation-dependent
Slower response
High-level intelligence
Variable latency

Representation-free
Real-time response
Low-level intelligence
Simple computation

Purely symbolic

SPEED OF RESPONSE

PREDICTIVE CAPABILITIES

Reflexive

DEPENDENCE ON WORLD MODELS

DELIBERATIVE REACTIVE

Figure 2.1: Control architectures’ spectrum

In this section we give an overview (characteristics, advantages and disadvantages)
of the three main approaches: purely deliberative orhierarchical architectures, purely
reactive orbehavior-based architectures, andhybrid architectures, which combine both
previous methods.

2.1.1 Hierarchical Architectures

Hierarchical architectures, also named deliberative control architectures, were used for
many years since the first robots began to be built. Examples of such architectures
and robots are SRI’s Shakey [54], Stanford’s CART [50], NASA’s Nasrem system [42]
and Isik’s ISAM [32], among others. These architectures arebased on a top-down
philosophy, following asense-plan-actmodel (see Figure 2.2). The control problem is
decomposed into a set of modules, sequentially organized: first the perception module
gets the sensory information, which is passed to the modeling module that updates
an internal model of the environment; after that, planning is done using this internal
model, and finally the execution module implements the solution with the appropriate
commands for the actuators.

ActModel PlanSense

A
ct

ua
to

rs

S
en

so
rs

Figure 2.2: Sense-plan-act model

This model works very well when the environment in which the robot is working
can be tailored to the task to be performed (e.g. industrial robots in factories, with
magnetic beacons, marked paths, etc.). However, when the task is to be performed in
an unknown, unpredictable, noisy environment, they fail tosucceed, as the planning is

2.1. Control Architectures 13

Perception ResponseBehavior

Figure 2.3: Single behavior diagram

usually out-of-date by the time it is being executed.
Another drawback of such architectures is their lack of robustness. Since the infor-

mation is processed sequentially, a failure in any of the components causes a complete
breakdown of the system.

2.1.2 Behavior-based Robotics

Behavior-based robotics [3] appeared in the mid 1980s in response to the traditional
hierarchical approach. Brooks [8] proposed to tightly couple perception to action, and
thereby, provide a reactive behavior that could deal with any unpredicted situation the
robot may encounter. Moreover, Brooks advocated for avoiding keeping any model of
the environment in which the robot operates, arguing that “the world is its own best
model”. Behavior-based robotics is a bottom-up methodology, inspired by biological
studies, where a collection of behaviors acts in parallel toachieve independent goals.
Each of these behaviors is a simple module that receives inputs from the robot’s sensors,
and outputs actuator commands (see Figure 2.3). The overallarchitecture consists of
several behaviors reading the sensory information and sending actuator commands to
a coordinator that combines them in order to send a single command to each actuator
(see Figure 2.4).

Behavior n-1

Behavior n

Behavior 1

Behavior 2 A
ct

ua
to

rs

C
oo

rd
in

at
or

S
en

so
rs

Figure 2.4: Behavior-based architecture

The most representative of such architectures are Brooks’subsumption architecture
[8], Maes’action selection[43] and Arkin’smotor schemas[4]. Since then, many other
architectures have been proposed.

Behavior-based architectures are classified depending on how the coordination be-
tween behaviors is done:

• Competitive: in these architectures the coordinator selects an action coming from
one of the behaviors and sends it to the actuators, that is, itis a winner-take-

14 Chapter 2. Related Work and State-of-the-art

all mechanism. Subsumption architecture and action selection are examples of
competitive coordination.

• Cooperative: in these architectures the coordinator combines the actions coming
from several behaviors to produce a new one that is sent to theactuators. Motor
schemas is an example of cooperative coordination.

In this section we give a brief overview of the three most known behavior-based
architectures and point out some others relevant to our work.

Subsumption architecture

The Subsumption architecture, designed by Rodney Brooks [8], was the first of the
Behavior-based architectures. In this architecture each behavior is represented as a sep-
arate layer, having direct access to sensory information. Each layer has an individual
goal, and they all work concurrently and asynchronously. A layer is constructed of a
set of Augmented Finite State Machines (AFSM), connected bywires through which
signals can be passed from one AFSM to another. These layers are organized hierar-
chically, and higher levels are allowed to subsume, hence the name, lower ones. This
subsumption can take form of inhibition or suppression. Inhibition eliminates the sig-
nal coming out from an AFSM of the lower level, leaving it inactive. Suppression
substitutes the signal of the AFSM by the signal given by the higher level. Higher
level AFSMs can also send reset signals to lower ones. These mechanisms provide a
competitive, priority-based coordination.

The hierarchical organization permits an incremental design of the system, as higher
layers are added on top of an already working control system,with no need of modifying
the lower levels. An example of such behavior layering is depicted in Figure 2.5.

Lost

Reverse

SRun away
S

S

Wander Go

Forward

Collide

SENSORS

Explore layer

Back-out-of-tight
situations layer

Avoid-objects layer
BRAKES
MOTORS

Figure 2.5: Example of a control system using the subsumption architecture. Each box
is an AFSM, and signals are passed through the arrows connecting the AFSMs. An
encircled S is a suppression point, and an empty circle is a reset point

The main strengths of this architecture are its incrementaldesign methodology,
which makes it easy and intuitive to build a system, its hardware retargetability (each

2.1. Control Architectures 15

of the layers can be implemented directly on logic circuitry), and the support for paral-
lelism, since each layer can run independently and asynchronously.

However, this theoretic independence is not absolute, since higher layers can sup-
press, inhibit and also read the signals of lower layers. Moreover, these connections
between layers are hard-wired, so they cannot be changed during execution, thus, not
allowing on-the-fly adaptability of the system to changes inthe environment. One fi-
nal aspect against this architecture is that it forces the designer to prioritize behaviors,
therefore, the case of behaviors with equal priority cannotbe represented with the sub-
sumption architecture.

Action selection

Action selection is an architectural approach developed byPattie Maes [43] that uses
a dynamic mechanism for behavior (or action) selection. This dynamic mechanism
solves the problem of the predefined priorities used in the subsumption architecture.
Each behavior has an associated activation level, which canbe affected by the current
situation of the robot (gathered from the sensors), its goals, and the influence of other
behaviors. Each behavior also has some preconditions that have to be met in order to be
active. From all the active behaviors, the one with the highest activation level is chosen
for actual execution.

This coordination mechanism resembles very much our bidding approach. In our
architecture, each system (or agent within the Navigation system) bids according to
the urgency for having the action executed, which is equivalent to the activation level.
However, our bidding agents have no preconditions to be met in order to become active,
and they are always ready to bid. Another important difference is that behaviors in
action selection can influence the activation level of otherbehaviors, whereas in our
approach the agents are totally independent, since an agentcannot influence the bids of
another agent.

Motor schemas

The Motor schemas approach was proposed by Ronald Arkin [4],and it is a more bio-
logically based approach to control architectures than theprevious two. As in the previ-
ous approaches, each behavior receives sensory information as inputs and generates an
action as output. This output is always a vector that defines how should the robot move,
and can have as many dimensions as needed (e.g. two dimensions for ground-based
navigation, three for flying or underwater navigation, etc.). Each behavior uses the po-
tential field approach (developed by Khatib [34] and Krogh [37]) to produce its output
vector. However, instead of computing the entire potentialfield, only the response at
the current location of the robot is computed, allowing a simple and fast computation.
Contrarily to the previous two approaches, motor schemas uses a cooperative coordi-
nation mechanism. The way the different behaviors are coordinated is through vector
summation. Each behavior contributes to the global reaction depending on a gain factor
(Gi). Each output vector (Ri) is multiplied by its behavior gain factor and summed up
with the rest to produce a single output vector that will be sent to the robot’s actuators
(see Figure 2.6). These gain factors are very useful for adaptability purposes, as they

16 Chapter 2. Related Work and State-of-the-art

can be dynamically changed during execution, thus, as the action selection architecture,
also overcoming the restricting subsumption architecture’s priority scheme.

Behavior n-1

Behavior n

Behavior 1

Behavior 2S
en

so
rs

Coordinator

A
ct

ua
to

rs

R = (G R)Σ i i

Σ

Figure 2.6: Motor-schemas architecture

However, cooperative mechanisms have some problems. A firstproblem is that they
can reach local minima in the potential field. Imagine the situation in which the robot
has an obstacle in front of it, and the task to be performed is to reach a target located
right behind the obstacle. In this situation, the behavior for avoiding obstacles would
compute a repulsive vector coming from the obstacle, while the go-to-target behavior
would compute a vector going to the target, which would also point to the obstacle.
Thus, in a particular location, the sum of both vectors wouldbe null, and the robot
would not move anymore from that location. This problem is easily solved by adding
a noise schema, that always produces a small random vector inorder to avoid these
blocking situations from happening. Another problem of cooperative mechanisms is
that the action actually executed is one that no behavior hasgenerated. Again, imagine a
robot with an obstacle ahead, and imagine that two differentbehaviors generate outputs
for avoiding that obstacle, one trying to avoid it through the right and the other one
trying to avoid it through the left. The sum of the vector would be a vector going
straight ahead to the obstacle, which obviously would not bethe best thing to do.

Other behavior-based systems

Rosenblatt [56], in CMU’s Distributed Architecture for Mobile Navigation project
(DAMN), proposed an architecture that is similar to our approach. In this architecture,
a set of modules (behaviors) cooperate to control a robot’s path by voting for various
possible actions (steering angle and speed), and an arbiterdecides which is the action
to be performed. The action with more votes is the one actually executed. However, the
set of actions is pre-defined, while in our system each agent can bid for any action it
wants to perform. Moreover, in the experiments carried out with this system (DAMN),
the navigation system used a grid-based map and did not use atall landmark based
navigation.

Saffioti et al [58, 57] developed the Saphira architecture, which uses fuzzy logic
to implement the behaviors. Each behavior consists of several fuzzy rules that have

2.1. Control Architectures 17

fuzzy variables as antecedents (extracted from sensory andworld model information),
and generate as output a control set (i.e. fuzzy control variable). This control set is
computed from the values of the fuzzy variables, and it represents the desirability of
executing the control action, being similar to the activation level of the action selection
architecture. Each behavior also has a fixed priority factorwhich is used for coordinat-
ing all the behaviors. This coordination is very similar to the cooperative mechanism
used in Motor schemas. However, instead of combining vectors, it combines control
sets and then defuzzifies the resulting set in order to get a single control value.

Humphrys [31] presents several action selection mechanisms that use a similar co-
ordination mechanism to ours. Each agent suggests the action it wants the robot to
perform with a given strength or weight (equivalent to our bid), and the action with the
highest weight is the one executed. These weights are computed (and learned through
Reinforcement Learning) using the one-step reward of executing an action, which each
agent is able to predict for the actions it suggests. This is an important difference with
our problem, since we cannot assign a one-step reward to an action; the only reward the
robot may receive is when the robot reaches the target, and itis very difficult to split this
reward into smaller rewards for each action taken during thenavigation to the target.

2.1.3 Hybrid Architectures

Although it has been widely demonstrated that behavior-based architectures effectively
produce a robust performance in dynamic and complex environments, they are not al-
ways the best choice for some tasks. Sometimes the task to be performed needs the
robot to make some deliberation and keep a model of the environment. But behavior-
based architectures do avoid this deliberation and modeling. However, as we have men-
tioned at the beginning of this section, purely deliberative architectures are also not the
best choice for tasks in complex environments. Thus, a compromise between these two
completely opposite views must be reached. This is whathybrid architecturesachieve.

In these hybrid architectures there is a part of deliberation, in order to model the
world, reason about it and create plans, and a reactive part,responsible of executing
the plans and quickly reacting to any unpredicted situationthat may arise. Usually
these architectures are structured in three layers (see Figure 2.7): (1) the deliberative
layer, responsible of doing high-level planning for achieving the goals, (2) the control
execution layer, which decompose the plan given by the deliberative layer into smaller
subtasks (these subtasks imply activating/deactivating behaviors, or changing priority
factors), and (3) the reactive layer, which is in charge of executing the subtasks set by the
control execution layer and can be implemented with any behavior-based architecture.
Examples of such hybrid architectures, among others, are Arkin’s AuRA [2] and Gat’s
Atlantis system [29] for JPL’s rovers.

Another hybrid architecture, although not following the three-layer structure, is that
of Liscano et al [25]. In their architecture, they use an activity-based blackboard con-
sisting of two hierarchical layers for strategic and reactive reasoning. A blackboard
database keeps track of the state of the world and a set of activities to perform the nav-
igation. Arbitration between competing activities is accomplished by a set of rules that
decide which activity takes control of the robot and resolves conflicts.

18 Chapter 2. Related Work and State-of-the-art

SensorsActuators

Status

InvocationPlan

Activation

Control
Execution

Layer

Layer
Deliberative

Reactive
Layer

Figure 2.7: Three layers hybrid architecture

Although our approach is presented as a behavior-based system, it is not a purely
reactive system, since there is some modeling (one of the agents of the Navigation
system is in charge of building a map of the environment and computing routes) and
deliberation (the agents reason about the world and communicate with each other). So
if we had to classify it on the spectrum of control architectures, we would place it in the
hybrid group, having the reactive and deliberative parts mixed in one single layer.

2.1.4 Bidding Mechanisms

Regarding the use of bidding mechanisms, we have found very few systems making use
of it. At CMU, the FIRE project [19] uses a market-oriented approach to model the co-
operation of a team of robots. In this approach, instead of using the bidding mechanism
to coordinate the agents of a single robot, bidding is used tocoordinate a team of robots
that have to accomplish several tasks. The rationale is thatwith this mechanism, each
task is performed by the best suited robot for the task, thus achieving a better global
performance.

Sun and Sessions [63] have also proposed an approach for developing a multi-agent
reinforcement learning system that uses a bidding mechanism to learn complex tasks.
The bidding is used to decide which agent gets the control of the learning process. The
agents bid according to the expected reward that would receive if they were given the
control. Thus, although they are competing for the control,they also cooperate, since
they seek to maximize the overall system reward.

2.2 Mapping and Navigation

The mapping problem is regarded as one of the most important problems in the field
of autonomous robotics, and it dates back to SRI’s famous Shakey robot [54]. A robot
operating autonomously needs to answer the three basic questions about mapping and
navigation, as posited by Levitt and Lawton [39]:

2.2. Mapping and Navigation 19

• Where am I?

• How do I get to other places from here?

• Where are other places relative to me?

This would be easy if an a priori map were available, but we aredealing with the
scenario of unknown environments. That is, the robot has no knowledge at all about
what the environment looks like, where the landmarks, the obstacles, etc are. To be
able to answer these questions and, thereby, be able to perform its task, the robot must
acquire a model of the environment in which it has to navigatethrough. Recent research
on modeling unknown environments is based on two main approaches:occupancy grid-
based(or metric), andtopological maps.

Another distinctive and very important feature of mapping approaches islocaliza-
tion. The localization problem can be split in two very differentparticular problems:
local localization andglobal localization. Local localization, also known as position
tracking, aims at compensating odometric errors occurringduring robot navigation. On
the other hand, global localization is concerned with the problem of finding out where a
robot is relative to a map of the whole environment. In this thesis we tackle the problem
of global localization. There are two main approaches for solving it: model matching
andlandmark basedlocalization.

In the rest of this section we will go through all these approaches, starting with the
global localization approaches, and then the grid-based and topological mapping ones.

2.2.1 Localization

As just mentioned, global localization is the problem of finding out where a robot is rel-
ative to a map (i.e. align the robot’s local coordinate system with the global coordinate
system of the map). This problem is as important as being ableto build a good map
of the environment. No matter how good the map is, it will be ofno use if we are not
able to localize the robot on it. Conversely, even if we know how to localize the robot
with high precision, that will be useless if there is no good map available on where to
localize it. Moreover, the accuracy of a metric map depends highly on the alignment of
the robot with its map. If we are not able to localize the robot, the resulting maps are
too erroneous to be of practical use. As seen, these two problems are closely related,
and most of the mapping approaches try to address both problems at the same time, in
what is known assimultaneous localization and mapping(SLAM).

Model matching localization

These algorithms extract geometric features from the sensor readings and try to match
them with a map of the environment, in order to correct possible odometric errors.
This approach is closely related to grid-based mapping (described below), since these
geometric features are the information pieces that grid-based mapping approaches store
on the map.

The position of the robot is incrementally computed using odometry and informa-
tion from sensors, by matching this information with the mapalready built. The sensor

20 Chapter 2. Related Work and State-of-the-art

information used for matching can be single sonar scans, which are matched with the
obstacles on the map, such in Moravec and Elfe’s approach [23, 52]. Other approaches,
such as Chatila and Laumond’s [18] extract geometric features (line segments and poly-
hedral objects) from the sensor readings and match them to a geometric map of the
environment.

One problem with this approach is that it requires accurate odometry to disam-
biguate among positions that look similar. Probabilistic approaches (Smith et al [61],
Fox et al [27], Castellanos and Tardós [16]) try to solve this ambiguity problem, and
they are the most frequently used in the field of robot mapping. The basic idea of these
algorithms is to employ probabilistic models of the robot and the environment to cope
with the uncertainty of robot motion and sensor reading. In order to localize the robot,
they use consecutive sensor readings to estimate a distribution over the space of all lo-
cations in the environment. The more readings the robot gets, the more precisely its
location can be computed.

In our case we do not have to deal with this ambiguity, since wehave developed
a Vision system robust enough to correctly identify the landmarks. Thus, there is no
uncertainty about the presence of a landmark. However, there is some imprecision
about its location, which we deal with using fuzzy techniques.

The model matching approach, however, is computationally very expensive, since
the process of matching the current sensor readings with themap requires many com-
putations.

Landmark-based localization

In these approaches landmarks are used as references to compute the location of the
robot. Landmarks can range from a set of sensor readings to artificial landmarks such
as beacons or bar-codes or natural landmarks detected by vision systems. Because of
its computational simplicity and also its close relationship with human navigational
abilities, this approach is the most widely used, and it has been used with both grid-
based and topological approaches.

This approach also suffers from the problem of ambiguity among landmarks that
look similar. Again, the probabilistic approach can help solving this problem. Thrun
[65] and Dissanayake et al [21], among others, use this approach together with grid-
based maps, and Simmons and Koenig [60] and Kaelbling et al [33] combine it with the
topological approach.

2.2.2 Map Representation

In order to navigate through the environment, the robot mustcreate a model of it. There
are two approaches to model the environment, the metric or grid-based approach, and
the topological approach. Depending on the type of environment one or the other ap-
proach is most appropriate. Table 2.1 summarizes the advantages and disadvantages of
these two approaches.

2.2. Mapping and Navigation 21

Grid-based approaches Topological approaches
A

D
VA

N
TA

G
E

S

• easy to build, represent and
maintain

• non-ambiguous recognition of
places and view-point indepen-
dent

• facilitates computation of
shortest paths

• permits efficient planning, low
space complexity

• does not require accurate deter-
mination of robot’s pose

• convenient representation for
symbolic planner/problem
solver

D
IS

A
D

VA
N

TA
G

E
S • inefficient and space-

consuming planning

• requires accurate determina-
tion of the robot’s position

• poor interface for most sym-
bolic problem solvers

• difficult to construct and
maintain in large-scale envi-
ronments if sensor informa-
tion is ambiguous

• recognition of places often
difficult, sensitive to view-
point

• may yield suboptimal paths

Table 2.1: Advantages and disadvantages of grid-based and topological mapping ap-
proaches

Grid-based mapping

This approach was originally proposed by Elfes [23] and Moravec [51]. Cells in an
occupancy grid contain information about the presence or not of an obstacle. Each
of these cells is updated using sensor readings, and its value represents the degree of
belief in the presence of an obstacle. The vast number of grid-based algorithms differ
on the way in which sensor readings are translated into occupancy levels. Among other
techniques, probability theory [51, 66, 67] and fuzzy set theory [41, 40] have been
used. This mapping approach can be used in conjunction with the two localization
approaches, as has been just described above.

In this approach, navigation is performed using path planning algorithms, which
compute precise routes through the environment in order to reach a goal avoiding the
obstacles.

Although this approach is widely used and achieves very goodresults, it is mainly
focused for indoor structured environments. The size of such environments permits the
robot to maintain a grid with a high enough resolution (i.e. small cells). In large outdoor
environments, however, this technique cannot be applied, as the computational cost of
the grid would be too high.

Moreover, in most of the algorithms following this approach, the robot has a training
period in which it navigates through the environment with the only purpose of building

22 Chapter 2. Related Work and State-of-the-art

a map. After this training period, the robot is able to perform its task and localize itself
using the already built map. In our scenario, however, thereis no such training period,
as the robot does not have the opportunity to inspect the environment before attempting
to reach the target, but has to reach it while exploring the environment for the first time.

Topological mapping

In comparison to grid-based representations, topologicalrepresentations (such as those
proposed by Chatila [17], Kuipers and Byun [38], Matarić [47] and Kortenkamp [36],
among others) are computationally cheaper. They use graphsto represent the environ-
ment. Each node corresponds to an environment feature or landmark and arcs represent
paths or motion instructions between them. Some approaches(Kuipers [38], Korten-
camp and Weymouth [35]) also define the nodes as “places”, where a “place” is defined
as a location where a set of features or landmarks fulfill a given property (e.g. sonar
readings matching, landmark visibility, etc.).

With this graph, the problem of navigation is reduced to the problem of finding a
route from one node to another – the target one. This can be easily computed with
many graph search algorithms (Dijkstra’s shortest path, A*, dynamic programming).
However, this simplicity of computing routes has the disadvantage that the routes are
not always the optimal ones, since there is not an accurate geometric description of
the environment, and path planning algorithms for metric worlds cannot be applied.
Moreover, in topological graphs there is no explicit representation of the obstacles, as
in a metric map. Therefore, when moving from one node to another, there is no way of
planning an optimal path, since there may be some obstacles on the way.

The advantage of topological approaches is that they do not rely on odometry in
order to build the map nor localize the robot on it. The only point in which odometry
is sometimes used is to label the arcs between nodes. As already mentioned, the arcs
contain information about how to get from one node to another. This information can
be, depending on the approach, metric information (headingand distance to the next
node). If this were the case, the odometry error would influence the precision of this
information. However, since neighboring nodes are close toeach other, this error is
bounded and does not accumulate as the robot navigates through the environment.

The drawback of not using metric information is that topological approaches have
difficulties in determining if two places that look similar are the same place, since they
compute the position of the robot relative to the known landmarks. This problem can be
tackled if a robust enough landmark recognition system is inplace. Landmark recog-
nition is a very active field of research in vision and very promising results are being
obtained [46]. In this work we assume that the vision system can recognize landmarks.
However, in the absence of a robust recognition system, a probabilistic approach, simi-
lar to the one described for metric maps, could be applied.

Topological approaches can also be combined with grid-based approaches. Thrun
[66] combines both representations in his work on learning maps for navigation in in-
door structured environments. The grid-based map is partitioned in coherent regions
to generate a topological map on top of the grid. By combiningboth methods, his ap-
proach gains the advantages of both methods, resulting in anaccurate, consistent and
efficient mapping approach. This is indeed a good idea for indoor environments but for

2.2. Mapping and Navigation 23

large-scale outdoor environments may not be worth the computational effort of main-
taining a grid representation under a topological one.

In our work we use the approach where nodes represent regionsdefined by groups
of three landmarks and that are connected by arcs if the regions are adjacent, that is, if
they have two landmarks in common. The arcs, instead of containing motion informa-
tion, represent the cost of going from one region to another.This graph is incrementally
built while the robot is moving within the environment. Thisincremental map building
approach is based on previous work by Prescott [55] that proposed a network model that
used barycentric coordinates, also called beta-coefficients by Zipser [68], to compute
the spatial relations between landmarks for robot navigation. By matching a perceived
landmark with the network, the robot can find its way to a target provided it is repre-
sented in the network. Prescott’s approach is quantitativewhereas our approach uses a
fuzzy extension of the beta-coefficient coding system in order to work with fuzzy qual-
itative information about distances and directions. Another difference with Prescott’s
approach is that his topological graph contains only adjacency information, thus, not
maintaining any information about costs, as in ours. This cost information is very im-
portant when planning routes from one region to another, since it is the only way to
know whether a path is blocked or free. One final point to mention is that in Prescott’s
experiments, carried out only on simulation, the robot was allowed a training period,
while this period is not present in our approach.

Levitt and Lawton [39] also proposed a qualitative approachto the navigation prob-
lem. In this approach, landmark pairs divide the environment into two regions, one for
each side of the line connecting the two landmarks. The combination of all such linear
divisions generates a topological division of the environment, on which navigation can
be performed. Navigation consists of crossing a series of landmark pairs in order to
reach the region containing the target landmark. Our navigation method uses the same
idea for computing and navigating to diverting targets. Thedifference between this
approach and ours is that we use three landmarks for creatingthe region subdivision,
instead of only two. This gives as result a better and more compact division of the en-
vironment. Moreover, this third landmark permits the robotto compute a relationship
among the landmarks that is unique and invariant to viewpoint.

Another qualitative method for robot navigation was proposed by Escrig and Toledo
[24], using constraint logic. However, they assume that therobot has some a priori
knowledge of the spatial relationship of the landmarks, whereas our system builds these
relationships while exploring the environment.

One of the drawbacks of most of the mapping approaches is thatthey are thought
for static environments. That is, landmarks are not supposed to change their location
while the robot is exploring the environment. Thus, research on vision systems capable
of extracting robust (distinguishable, invariant to viewpoint and illumination, static)
landmarks is very important. However, some mapping approaches are already able to
cope with dynamic environments. In [1] landmarks have an existence state (using the
principles of neural networks). This mechanism permits theremoval of landmarks for
which their existence is not certain enough. We have used a similar idea to devise a
Visual Memory(see chapter 4), a short term memory of detected landmarks.

Chapter 3

Mapping and Navigation

As already mentioned, the task the robot has to perform is to navigate through an un-
known unstructured environment and reach a target landmarkspecified by a human
operator. This task is not easy to solve, since it has to be carried out in a complex
environment, and the target can be occluded by other objects. Purely reactive robotic
systems would have problems trying to accomplish this task,since they do not build
any model of the environment. If the target were lost, it would be difficult to recover
its visibility and continue the navigation towards it. For this reason, we thought that the
robot should build a map of the environment in order to navigate through it. The infor-
mation stored in the map must permit the robot to compute its location, the location of
the target, and how to get to this target. Although the objective of this PhD thesis is to
develop a navigation system for indoor environments, we have used a map representa-
tion that also works outdoors, since this is the next milestone of the project in which
we are involved. Thus, instead of using a grid-based approach, the most widely used
approach for indoor environments, we have used a topological one, most appropriate
also for outdoors.

Our approach is based on the model proposed by Prescott in [55]. The princi-
ples underlying this model are inspired by studies of animaland human navigation and
wayfinding behavior. This model, calledbeta-coefficient system, does not only deal with
how to represent the environment as a map, but also adds a mechanism for computing
the location of landmarks when they are not visible, based onthe relative positions of
the landmarks. This mechanism is what we have used to providethe robot with orienta-
tion sense, since it captures the relationship among different places of the environment.
The robot makes use of this orientation sense to compute the location of the target when
it is occluded by other objects or obstacles.

In this chapter we firstly describe how Prescott’s model works when the robot is
able to have exact information about its environment, and then we explain how we have
extended it to work with imprecise information. We also describe the method used
for dividing the environment into appropriate topologicalregions, and finally how the
topological map is used to navigate through the environment.

25

26 Chapter 3. Mapping and Navigation

A

X’

B

T

C

A

C

V

V’

TB

C

A

X

X

X

X’

X’

X’B T

X

?

Figure 3.1: Possible landmark configuration and points of view. Landmarks A, B, C
and T are visible from viewpointV . Only landmarks A , B and C are visible from
viewpointV ′

3.1 Beta-coefficient System

The idea behind Prescott’s model is to encode the location ofa landmark (which we
refer to as target – not to confuse with the target or goal of the Navigation system) with
respect to the location of three other landmarks. Having seen three landmarks and a
target from a viewpoint (e.g., landmarksA, B andC and targetT from viewpointV ,
in Figure 3.1), the system is able to compute the target’s position when seeing again the
three landmarks, but not the target, from another viewpoint(e.g.,V ′). A vector, called
theβ-vector of landmarks A, B, C and T, is computed as

β = X−1XT (3.1)

whereX = [XAXBXC] andXi = (xi, yi, 1)T , are the homogeneous Cartesian coor-
dinates of objecti, i ∈ {A, B, C, T}, from viewpointV . This relation is unique and
invariant for any viewpoint if landmarks are distinct and non collinear. The target’s
location from viewpointV ′ is computed as

X ′
T = X ′β, (3.2)

whereX ′ = [X ′
AX ′

BX ′
C].

It should be noted that, although Prescott’s system works with Cartesian coordi-
nates, once all the computations have been done, the resulting target’s location is con-
verted to polar coordinates, since, as will be seen in next chapters, this is the coordinate
system that uses the Navigation system.

This method can be implemented with a two-layered network. Each layer contains
a collection of units, which can be connected to units of the other layer. The lowest
layer units areobject-units, and they represent the landmarks the robot has seen. Each
time the robot recognizes a new landmark, a new object-unit is created. The units of the
highest layer arebeta-unitsand there is one for eachβ-vector computed.

When the robot has four landmarks in its viewframe, it selects one of them to be the
target, a new beta-unit is created, and theβ-vector for the landmarks is calculated. This
beta-unit will be connected to the three object-units associated with the landmarks (as
incoming connections) and to the object-unit associated with the target landmark (as
an outgoing connection). Thus, a beta-unit will always havefour connections, while

3.1. Beta-coefficient System 27

an object-unit will have as many connections as the number ofbeta-units it participates
in. An example of the network can be seen in Figure 3.2b. In this figure there are six
object-units and three beta-units. The notation ABC/D is understood as the beta-unit
that computes the location of landmark D when the locations of landmarks A, B and C
are known.

This network has a propagation system that permits the robotto compute the lo-
cation of non-visible landmarks. It works as follows: when the robot sees a group of
landmarks, it activates (sets the value) of the associated object-units with the egocentric
locations of these landmarks. When an object-unit is activated, it propagates its loca-
tion to the beta-units connected to it. On the other hand, when a beta-unit receives the
location of its three incoming object-units, it gets activeand computes the location of
the target it encodes using itsβ-vector, and propagates the result to the object-unit rep-
resenting the target. Thus, an activation of a beta-unit will activate an object-unit that
can activate another beta-unit, and so on. For example, in the network of Figure 3.2b,
if landmarks A, B and C are visible, their object-units will be activated and this will
activate the beta-unit ABC/D, computing the location of D, which will activate BCD/E,
activating E, and causing BDE/F also to be activated. In thiscase, knowing the location
of only three landmarks (A, B and C), the network has computedthe location of three
more landmarks that were not visible (D, E and F). This propagation system makes the
network compute all possible landmarks’ locations. Obviously, if a beta-unit needs the
location of a landmark that is neither in the current view noractivated through other
beta-units, it will not get active.

This propagation system adds robustness to the computationof non-visible land-
marks, since a landmark can be the target of several beta-units at the same time. Because
of imprecision in the perception on landmark locations, theestimates of the location of
a target using different beta-units are not always equal. When this happens, the differ-
ent location estimates must be combined. Prescott uses the size of theβ-vector as the
criterion to select one among them. A beta-unit with a smaller β-vector is more precise
than those with largerβ-vectors (see [55] for a detailed discussion on how to compute
the estimate error from the size of theβ-vector). The propagation system does not only
propagate location estimates, but also the size of the largestβ-vector that has been used
to compute each estimate. When a new location estimate arrives to an object-unit, its
location is substituted with the new one if the size of the largestβ-vector used is smaller
than that used for the last location estimate received.

The network created by object and beta units can be convertedinto a graph where
the nodes represent triangular shaped regions delimited bya group of three landmarks,
and the arcs represent paths. These arcs can have an associated cost, representing how
difficult it is to move from one region to another. Although the arcs are created imme-
diately when adding a new node to the graph, the costs can onlybe assigned after the
robot has moved (or tried to move) along the path connecting the two regions. In the
case the path is blocked by an obstacle, the arc is assigned aninfinite cost, representing
that it is not possible to go from one region to the other. Thisgraph is a topological map,
and we call its nodestopological units. An example of how the topology is encoded in
a graph is shown in Figure 3.2c.

This topological map is used when planning routes to the target. Sometimes, when

28 Chapter 3. Mapping and Navigation

B

EF

A
C

D

(a) (b) (c)

G

A
B

C
D

E
F

ABC/D

BCD/E

BDE/F

ABC

BEF
ABF

EFG

BDE

BCD

Figure 3.2: (a) Set of landmarks (b) associated network (partial view) and (c) associated
topological map

the position of the target is known, the easiest thing to do isto move in a straight line
towards it, but sometimes it is not (the route can be blocked,the cost too high...). With
the topological map, a route to the target can be computed. InSection 3.4 a detailed
explanation on how to compute routes to the target is given.

3.2 Extending Prescott’s System: Moving to Fuzzy

The beta-coefficient system, as described by Prescott, assumes that the robot can com-
pute the position of the landmarks with small errors, in order to create the beta-units
and use the network. But this is never the case: the Vision system provides the robot
with inexact information about the location of landmarks. To work with this imprecise
information we use fuzzy numbers.

3.2.1 Fuzzy Numbers and Fuzzy Operations

A fuzzy number can be thought of as a weighted interval of realnumbers, where each
point of the interval has a degree of membership, ranging from 0 to 1 [7]. The higher
this degree, the higher the confidence that the point belongsto the fuzzy number. The
functionFA(x), calledmembership function, gives us the degree of membership forx
in the fuzzy numberA.

Before defining the arithmetic with fuzzy numbers, we have tointroduce the concept
of α-cut. Theα-cut (α ∈ [0, 1]) of a fuzzy numberA, is the interval{A}α = [a1, a2]
such thatFA(x) >= α, ∀x ∈ [a1, a2].

Let A andB be fuzzy numbers, and{A}α and{B}α α-cuts. The fuzzy arithmetic
operations are defined as follows,

A + B = C, s.t. {C}α = {A}α ⊕ {B}α ∀α

A − B = C, s.t. {C}α = {A}α ⊖ {B}α ∀α

A × B = C, s.t. {C}α = {A}α ⊗ {B}α ∀α

A ÷ B = C, s.t. {C}α = {A}α ⊘ {B}α ∀α

where the operations⊕,⊖,⊗ and⊘ are performed on intervals and are defined as
[a1, a2] ⊕ [b1, b2] = [a1 + b1, a2 + b2]

[a1, a2] ⊖ [b1, b2] = [a1 − b2, a2 − b1]

3.3. Building the Map 29

[a1, a2] ⊗ [b1, b2] = [min(a1b1, a1b2, a2b1, a2b2), max(a1b1, a1b2, a2b1, a2b2)]

[a1, a2] ⊘ [b1, b2] = [a1, a2] ⊗ [1

b2
, 1

b1
], 0 /∈ [b1, b2]

3.2.2 Fuzzy Beta-coefficient System

To use the beta-coefficient system with fuzzy numbers, we simply perform the cal-
culations described in the previous section using the fuzzyoperators defined above.
However, because of the nature of fuzzy operators, some landmark configurations may
not be feasible (the matrix inversion used for computing theβ-vector – Equation 3.1–
may produce a division by 0), so not all configurations can be stored in the network.

When using the network to compute the position of a landmark,we obtain a fuzzy
polar coordinate(r, φ), wherer andφ are fuzzy numbers, giving us qualitative informa-
tion about its location. An advantage of working with fuzzy coordinates is that it gives
us information about how precise the location estimate is, since it represents the loca-
tion not as a crisp coordinate, but as a spatial region where the landmark is supposed to
be.

Another difference with Prescott’s model is the criterion used to select among dif-
ferent estimated locations for the same landmark. In our extended system, instead of
looking at the size of theβ-vectors, we use the imprecision of the estimated location
itself. The imprecision of a landmark location,I(l), is computed by combining the im-
precision in the heading and in the distance as follows.Ih(l) is the imprecision in head-
ing, and it is defined by taking the interval corresponding tothe 70%α-cut of the fuzzy
number representing the heading to the landmark (see Figure3.3). This imprecision is
normalized dividing it by its maximum value of2π. Similarly, Id(l) is the imprecision
in distance, and it is defined as the 70%α-cut of the fuzzy number representing the
distance. It is normalized by applying the hyperbolic tangent function, which maps it
into the[0, 1] interval. Finally, the two imprecisions are combined according to:

I(l) = λ · tanh(β · Id(l)) + (1 − λ) ·
Ih(l)

2π
(3.3)

whereλ weighs the relative importance of the two imprecisions, andβ controls how
quickly the transformedId approaches 1. In our experiments, we setβ = 1 andλ = 0.2.
When an object-unit receives a new location estimate, it computes the imprecision of
this estimate, compares it with the imprecision of the current location estimate, and
keeps the least imprecise location.

3.3 Building the Map

In Section 3.1 we mentioned that when the robot has four landmarks in its viewframe,
it creates a new beta-unit for them. However, with four landmarks, there are four can-
didates to be the target of the beta-unit. Moreover, if the robot has more than four
landmarks in the viewframe, there are many possible beta-units to be created. More
precisely, if there aren visible landmarks, there are

(

n
4

)

· 4 candidates for being new
beta-units. However, it is not feasible to store them all, firstly because of the huge num-

30 Chapter 3. Mapping and Navigation

1

0.7

2π

I (l)
h

70% α−

Heading(l)0
0

cut

Figure 3.3: Computation of the imprecision of the heading toward landmarkl as a fuzzy
number

ber of combinations, and secondly, and more important, because some configurations
are better than others. Thus, some selection criterion mustbe used.

Before describing the criterion we have used, we explain howthe obstacles are rep-
resented in the map. We differentiate two types of obstacles: pointobstacles andlinear
obstacles.Point obstacles are those the robot can easily avoid by slightly modifying its
trajectory, since they do not completely block the path. In our indoor environment such
obstacles are boxes and bricks. In outdoor environments they could be small rocks,
trees, etc. These obstacles do not affect the global navigation, as the Pilot can tackle
them alone, so the Navigation system does not take them into account and they are not
stored in the map. On the other hand,linear obstacles are long obstacles that completely
block the path of the robot. They can also be avoided by the Pilot, but the trajectory
has to be drastically modified. In our indoor environment we use several bricks to
form these obstacles. In an outdoor environment these obstacles could be fences, walls,
groups of rocks, etc. Since these obstacles do highly affectthe navigation task, they
have to be represented in the map, so that they are taken into account when computing
routes to the target. The information about these obstaclesis stored on the arcs of the
topological map. An arc is labelled with an infinite cost to indicate that there is an obsta-
cle between the two regions connected by the arc. Notice thatwith this representation
we can only represent those obstacles placed along the line connecting two landmarks.
Although in our experiments we have designed the environments so that they satisfy this
condition, the system would also work if it were not satisfied. However, in this latter
case, the Navigation system could not take all the obstaclesinto account, and thus, its
performance would be worse. The arcs’ labels are updated whenever the Pilot system
informs about the presence of an obstacle between two landmarks.

Going back to the selection criterion, given a set of landmarks, for which their
location is known, we seek to obtain a set of triangular regions with the following
constraints:

• Low collinearity: the collinearity of a region is computed as

Col(R) = 1 −
αβγ

(π
3)3

(3.4)

whereα, β andγ are the three angles of the triangular region. The best quality
is associated to equilater triangles, whereα = β = γ = π

3 , and hence their
collinearity is 0. When one of the angles is 0, landmarks would be maximally

3.3. Building the Map 31

collinear andCol(R) = 1. The higher the collinearity, the higher the error on
the computation of theβ-vector and landmark locations (see [55] for a detailed
explanation). Therefore, the regions with lower collinearity are preferred. For
example, in Figure 3.4 the two regions on the right are preferred over the two on
the left, since the region ABD is too collinear.

D

B

D

B

A A

C C

Figure 3.4:Left: bad set of regions; region ABD is too collinear.Right: good set of
regions

• Connectivity: the set of regions must be converted into a graph with a single com-
ponent, so that there is a path between any two nodes of the graph. In Figure 3.5,
the set of regions on the left is not acceptable, since there are two disconnected
components, whereas in the set on the right all the regions are connected.

B

A

D

E

F

G

B

A

C

D

E

F

G

C

Figure 3.5:Left: bad set of regions; there are two disconnected components.Right:
good set of regions

• Convex hull covering: the regions must cover the convex hull of the set of land-
marks, so that the environment is represented completely, with no unrepresented
regions. In Figure 3.6, the set on the left is not acceptable,since the region DFG
is not represented.

B

A

C

E

F

G

D

B

A

C

E

F

G

D

Figure 3.6:Left: bad set of regions; region DFG is missing.Right: good set of regions

32 Chapter 3. Mapping and Navigation

• Non overlapping: the regions should not overlap with each other. If this werethe
case, the robot could be in more than one region at the same time, which could
cause some problems when computing routes to the target. Forinstance, if the
robot were in the overlapping area of the two regions, it would make no sense to
order the robot to move from one region to the other, since it would already be
inside both regions, and the order would not have any effect.Moreover, if one of
the overlapping edges is an obstacle, the path from one side of the adjacent region
to the other side would be blocked, which is obviously a bad representation of the
environment, since the robot must be able to move around the whole space of a
region. In Figure 3.7, the set of regions on the left is a bad set, since part of the
obstacle between landmarks B and D lies inside the region ADC. In this case,
the associated graph would have two nodes, ABD and ACD, whichwould be
connected, so the robot would think that it can move from region ABD to region
ADC, but it would find the path blocked because of the obstacle.

D

B

D

B

A A

C C

obstacle

Figure 3.7:Left: bad set of regions; the obstacle between landmarks B and D isinside
the region ACD.Right: good set of regions

• Keep obstacles: if an edge of a region is marked as an obstacle, this edge must
be kept in the map, even if it causes the robot to keep high collinear regions. The
obstacle edges are the only ones that cannot be removed from the map. If we did
so, the information about the location of obstacles would belost and would not
be taken into account when computing routes to the target.

To compute the optimal set of regions for a given set of landmarks, we have de-
veloped an incremental algorithm that treats landmarks oneby one to update the map.
However, the algorithm only starts working when the locations of at least four land-
marks are known, since this is the number of landmarks neededto create a beta-unit.
With these four landmarks, the mapping algorithm computes the best set of regions
according to the constraints given above. Then, the rest of visible landmarks, if any,
are added one by one to the already built map. When adding a newlandmark to the
map, two situations can happen: (1) the landmark is inside analready existing region,
or (2) the landmark is outside any region. In the first case, the region containing the
new landmark is replaced by three new regions (see Figure 3.8). In the second case,
all the possible new regions are created (see Figure 3.9). Nomatter the situation of the
landmark, once the new regions have been created, the algorithm checks if the result-
ing map is still optimal. This optimization consists of analyzing each pair of adjacent
regions and checking if their configuration is optimal according to the constraints. If it

3.3. Building the Map 33

finds that some regions could be changed so that a better configuration is obtained, it
does so. An example of this step by step updating is shown in Figure 3.10.

B

A

C

D

B

A

C

D

Figure 3.8: Adding a new landmark (D) located inside an existing region (ABC) result-
ing in the substitution of the original region for three new regions (ABD,ACD,BCD)

B

A
D

A

C

D

B

C

Figure 3.9: Adding a new landmark (D) located outside any existing region resulting in
the addition of two new regions (ACD,BCD)

Once the set of regions is computed, new beta and topologicalunits can be created.
For each new region a beta-unit is created for each region adjacent to it, taking the three
landmarks of the first region as the encoding landmarks, and the landmark of the second
region that is not in the first one as the target. In other words, for each pair of adjacent
regions, two “twin” beta-units are created. An example can clarify this explanation:
with the regions ABC and ACD shown on the right in Figure 3.4, the beta-units ABC/D
and ACD/B would be created. One topological unit is also created for each new region,
and the graph is updated according to the adjacency of regions. Initially, the arcs are
labelled with a default cost of 1, and they are changed to∞ whenever an obstacle is
detected. The topological units corresponding to regions that are not used any more
are removed from the graph. However, beta-units are never removed, since they add
robustness to the system, as in Section 3.1.

This triangulation algorithm needs the location of the landmarks to be known (either
recognized by the Vision system or computed by the beta-coefficient system). However,
not all landmark locations can always be known. The algorithm only takes into account
those landmarks whose locations are known. This ensures that the five constraints ex-
plained above are satisfied only for the located landmarks. When one of the unlocated
landmarks is seen or computed, some constraints might become unsatisfied. Whenever
any constraint is broken, the map is rebuilt in order to satisfy again all the constraints.
This constraint break can also be caused by the fuzziness of the locations. Because of

34 Chapter 3. Mapping and Navigation

A

B

C

D

E

A

B

C

D

E

B

C

D

E
A

Figure 3.10: Adding a new landmark (E) into a map with two regions (ABD and BCD):
first, region ABD is substituted for three new regions (ABE,ADE,BDE); after that,
optimization for regions BCD and BDE is performed and they are substituted for the
new regions BCE and CDE

the imprecision of the locations, the map can suddenly be breaking some of the con-
straints. To avoid having an inconsistent map, every once ina while the satisfaction of
the constraints is checked, and, if needed, the map is rebuilt.

3.4 Navigating Through the Environment

The beta-coefficient system described above provides the means for computing the lo-
cation of a target even if it is not visible. This is very useful if the robot is navigating in
an environment with a high density of landmarks and obstacles that occlude the target.
In this case, the robot is able to go towards the target by seeing other landmarks. How-
ever, in some cases the obstacles might be blocking the direct path to the target. In this
case, knowing the location of the target is not enough and an alternative route to reach
it must be computed using the topological map.

Although a route consists of a sequence of regions the robot should navigate through
in order to reach the target, only the first region is taken into account. The reason for
doing so is that since the environment is never fully known, the robot cannot commit
to a given route because it might encounter new landmarks andobstacles that would
change the shape of the map, and possibly, the route to the target. Therefore, hereafter,
instead of talking about routes, we will talk about diverting targets. A diverting target
can be: (1) anedgebetween two landmarks, which the robot has to cross in order to go
from one region to another, or (2) asingle landmarkto which the robot has to approach.

When the system is asked for a diverting target in order to reach another target,
it first finds out in which region the robot is currently located, using the information
about the landmarks whose location is known. This region will be the starting node on
the topological map. The shortest path from this node to any of the nodes containing
the target landmark (a landmark can be component of several topological regions) is
computed. The edge connecting the current region with the next one on the shortest
path will be the diverting target. The edge is given as a pair of landmarks, one that has
to be kept on the left hand side of the robot and another to be kept on the right hand
side, so the robot knows which way the edge has to be crossed. An example is shown
in Figure 3.11. In this case, the robot is in region ABC, the target is G, and the shortest

3.4. Navigating Through the Environment 35

G

F

ED

C

B

A

obstacle
robot

BEF

CFG

EFG

BCF
ABC

BDE

ABD

shortest path

starting
node

target
nodes

Real environment Topological map

target

Figure 3.11: Diverting target computation

path to the target would be{ABC,ABD,BDE,BEF,EFG}. Thus, the diverting target
would be the edge AB.

However, it could happen that there is no such shortest path.The cases in which
such path does not exist are the following:

• The robot is not in any topological region.

• The cost of the shortest path is infinite. This means that the path is blocked by an
obstacle, so it is not a valid path.

• The target is not found in any topological region.

To solve the first two cases, the map has to be enlarged with virtual regions through
which the robot can navigate. The idea is to let the robot movein an unknown area
outside the map. The virtual regions are built by placing some virtual landmarks around
the existing map, and creating the appropriate regions using the same algorithm as
described in the previous section. An example of these virtual regions is depicted in
Figure 3.12. To force the robot to use regions of the originalmap, the arcs connecting
virtual regions are labelled with a high cost (though not infinite), so that they are used
only if it is absolutely necessary. With this enlarged map, the shortest path is computed
again. However, it can be that the edge to be crossed containsone virtual landmark. In
this case, the edge cannot be given as the diverting target, since the virtual landmarks do
not exist on the real environment and cannot be tracked. In this situation, the direction
to the middle point of the edge is computed and given as the diverting target. We assume
that there is always some free space around the explored area, so that the regions created
with the virtual landmarks can be traversed.

In the case the target is not in any topological region, thereis no way to compute
which should be the next region to visit, since there is no destination node. When this
happens, the diverting target is set to any of the visible landmarks, hoping that on the
way to this diverting target, the map is updated and the target for which a diverting
target has been computed is incorporated into it.

36 Chapter 3. Mapping and Navigation

original map

enlarged map

Figure 3.12: Enlarging the map with virtual regions (dottedlines)

3.5 Future Work

Although the extension of Prescott’s method, together withthe algorithms to compute
diverting targets, is enough for permitting a robot build a map and navigate through an
unknown environment, we would like to explore other mappingmethods, so that the
combination of the different methods adds robustness to theNavigation system. With
the current mapping method, the robot needs to see at least three landmarks in order to
be able to use the information stored in the map. We would liketo develop some other
mapping methods to cope with the situations in which the robot has very little informa-
tion (i.e. less than three landmarks). These methods would be even more qualitative
than our fuzzy extension of Prescott’s method. We could, forexample, look at the field
of Spatial Cognition, which works with spatial relationships such as “landmark X is at
the left hand side of the line connecting landmark Y and landmark Z”.

Chapter 4

The Robot Architecture

Navigation, as the general task of leading a robot to a targetdestination, is naturally in-
termingled with other low-level tasks such as obstacle avoidance, and high-level tasks
such as landmark identification. We can see each of the tasks,from an engineering point
of view, as a system, that is, systems require and offer services one another. These sys-
tems need tocooperate, since they need one another in order to achieve the overall
task of reaching the target. However, they alsocompetefor controlling the available
actuators of the robot. To exemplify this cooperation and competition, imagine a robot
controlled by three systems, the Pilot system, the Vision system and the Navigation
system. Actually, these three systems compose the architecture we have used to control
our robot, which will be described in detail in the rest of this chapter. Regarding the
cooperation, the Navigation system needs the Vision systemto recognize the known
landmarks in a particular area of the environment or to find new ones, and it also needs
the Pilot system to move the robot towards the target location. Regarding the com-
petition, the Navigation system may need the robot to move towards the target, while
the Pilot system may need to change the robot’s trajectory tosafely avoid an obstacle.
Moreover, the Pilot may need the camera to check whether there is any obstacle ahead
and, at the same time, the Navigation system may need to look behind to localize the
robot by recognizing known landmarks. Thus, some coordination mechanism is needed
in order to handle this interaction among the different systems. The mechanism has to
let the systems use the available resources in such a way thatthe combination of these
interactions results in the robot reaching its destination.

We propose a general architecture for managing this cooperation and competition.
We differentiate two types of systems:executive systemsanddeliberative systems. Ex-
ecutive systemshave access to the sensors and actuators of the robot. These systems
offer services for using the actuators to the rest of the systems and also provide infor-
mation gathered from the sensors. On the other hand,deliberative systemstake higher-
level decisions and require the services offered by the executive systems in order to
carry out the task assigned to the robot. Despite this distinction, the architecture is not
hierarchical, and the coordination is made at a single levelinvolving all the systems.
The services offered by the executive systems are not only available to the delibera-
tive systems; they are also available to the executive systems themselves. Actually, an

37

38 Chapter 4. The Robot Architecture

DS1 DSn

ES1 ESm

A1 Ak

 commands

 perceptions

perceptionsco
m

m
an

ds

actions' requests actions' requests
bids for actions

bids for actions

bids for actions

 bids for actions

information

in
fo

rm
at

io
n

information

information

D
el

ib
er

at
iv

e
S

ys
te

m
s

E
xe

cu
tiv

e
S

ys
te

m
s

A
ct

ua
to

rs
 /

S
en

so
rs

C

inform
ation

S1 Sl

Figure 4.1: General bidding coordination architecture

executive system must compete with the rest of the systems even for the services it is
offering. The systems (no matter their type) can exchange information between them
(be it sensory information or any other information they could have – e.g. map of the
environment). The architecture is depicted in Figure 4.1.

The coordination is based on a simple mechanism:bidding. Deliberative systems
always bid for the services offered by executive systems, since this is the only way
to have their decisions executed. Executive systems that only offer services do not
bid. However, those executive systems that require services from any executive system
(including themselves) must also bid for them. The systems bid according to the internal
expected utility associated to the provisioning of the services. A coordinator receives
these bids and decides which service each of the executive systems has to engage in.

Although we use the term “bidding”, there is no economic connotation as in an
auction. That is, systems do not have any amount of money to spend on the bids,
nor there is any reward or good given to the winning system. Weuse it as a way to
represent the urgency of a system for having a service engaged. The bids are in the
range[0, 1], with high bids meaning that the system really thinks that the service is the
most appropriate to be engaged at that moment, and with low bids meaning that it has
no urgency in having the service engaged.

This bidding mechanism is a competitive coordination mechanism, since the action
executed by each system is the consequence of a request of oneof the systems, not a
combination of several requests for actions made by different systems, as it would be in
a cooperative mechanism.

39

Navigation
System

Pilot
System

Vision
System

Wheels'
Motors

odom
etryco

m
m

an
ds

actions' requests actions' requests

bids for actions
bids for actions

C

inf
or

mati
on

Wheels'
Encoders

information

information

Camera's
Motors

Bumpers Camera

bumping info

com
m

ands

im
ag

es

D
el

ib
er

at
iv

e
S

ys
te

m
s

E
xe

cu
tiv

e
S

ys
te

m
s

A
ct

ua
to

rs
 /

S
en

so
rs

Target

Figure 4.2: Specific robot architecture

This modular view forms an extensible architecture. To extend this architecture
with a new capability we would just have to plug in one or more new systems, even-
tually adding new sensors or actuators, and eventually changing the bidding functions
of the existing systems. Not only that, it also permits us to recursively have a modular
view of each one of the systems, as will be soon seen in the design of our Navigation
system. Moreover, this architecture is not thought only fornavigation purposes since
its generality can be used for any task that could be assignedto a robotic system.

For our specific robot navigation problem, we have instantiated the general architec-
ture described above (see Figure 4.2). It has two executive systems, thePilot andVision
systems, and one deliberative system, theNavigationsystem. Each system has the fol-
lowing responsibilities. The Pilot is responsible for all motions of the robot, avoiding
obstacles if necessary. The Vision system is responsible for identifying and tracking
landmarks (including the target landmark). Finally, the Navigation system is respon-
sible for taking higher-level decisions in order to move therobot to a specified target.
The robot has two actuators: thewheels’ motors, used by the Pilot system, and thecam-
era motor, used by the Vision system. The available sensors are the wheel encoders
and bumpers, which provideodometricandbumpinginformation to the Pilot, and the
imagesobtained by the camera, used by the Vision system to identifylandmarks. The
Pilot system offers the service of moving the robot in a givendirection, and the Vision
system offers the service of moving the camera and identifying the landmarks found
within a given area. The bidding systems are the Pilot and theNavigation system, while
the Vision system does not bid for any service.

In the next sections we describe each of the three systems of the robot architecture,
focusing on the Navigation system, the main subject of this thesis.

40 Chapter 4. The Robot Architecture

landmarks or
point obstacles

linear obstacle

landmarks

Figure 4.3: Growing obstacles. Points and solid lines are the obstacles; dotted lines
show grown obstacles

4.1 Pilot System

The Pilot is able to safely command the motors that control the robot to move in a given
direction. It bids for motion control to avoid obstacles, and also for the control of the
camera to look forward in order to detect possible obstacles. Although this system is
not the focus of this thesis, we have had to develop a simple Pilot in order to test our
Navigation system.

For obstacle avoidance, it uses the information coming fromthe Vision system and
the information stored in the Visual Memory (described in the next section), applying
an obstacle growing technique. The obstacles are grown a given size to define forbidden
areas occupied by the obstacles. The obstacles are represented as points (for landmarks
and simple obstacles) and lines (for linear obstacles between landmarks), which, after
growing them, become circles and rounded rectangles, respectively. In our case, the
growing size is the diameter of the robot. An example of how the obstacles are grown
is shown in Figure 4.3. The Pilot uses a simple obstacle avoidance algorithm. It checks
whether the robot is about to enter any of the forbidden areasassociated to the obstacles.
If the robot is in such a situation, the Pilot bids to modify the trajectory in order to avoid
the obstacle. The modified trajectory is tangential to the grown obstacle to be avoided.
Since obstacle avoidance is of maximal importance, the bid should be higher than the
other systems. However, it should not be set to the highest possible value, 1, so that there
is the possibility of adding a new system that overrides the Pilot (e.g. a teleoperation
system). If the robot is in a safe area, the Pilot does not bid at all.

Regarding the bids for camera control, it is based on a function that increases the
bid depending on the distance traveled since the last time the robot looked forward:

bid(look(ahead)) =

(

dist since last look

max dist not looking

)exp

(4.1)

wheremax dist not looking is the maximum distance allowed to travel without look-
ing ahead, andexp defines the increasing shape of the bidding function.

4.2. Vision System 41

The Pilot also informs the Navigation system and the Visual Memory about any ob-
stacle it detects. Whenever it detects a single obstacle (i.e. it bumps into it), it stores the
obstacle’s location in the Visual Memory, and checks whether it can be part of a larger
linear obstacle. Such linear obstacles are detected when a series of single obstacles have
been detected along the line connecting two landmarks and the distance between these
obstacles is below a given threshold. If this is the case, thePilot informs the Navigation
system about the presence of a blocking obstacle between twolandmarks.

4.2 Vision System

The Vision system is able to identify new landmarks in the vision field of the camera
and is also able to recognize previously identified landmarks. This system does not bid
for any of the available services. Again, although this system is not on the focus of the
thesis, we have had to develop a simple Vision system for carrying out the experiments.
A detailed description of the vision system developed to recognize indoor landmarks is
given in Chapter 6.

The Vision system is simple but robust enough to correctly identify the landmarks.
Thus, there is no uncertainty about the presence of a given landmark. However, there
is some imprecision about its location, since the Vision system only gives approximate
distance and angular information. To deal with this imprecision we use the fuzzy tech-
niques described in Section 3.2.

The goal of this thesis is to develop a vision-based navigation system that does not
use any specialized localization device (e.g. GPS) nor odometric information. How-
ever, we found that it was very restricting for the Navigation system to use only the
visual information available after processing each viewframe. Firstly, because it is very
difficult to have more than three landmarks on the view field, since it is very narrow,
and the beta-coefficient system needs to have at least four visible landmarks in order
to create a newβ-unit. But even if four landmarks were in the view field, they would
probably be highly collinear, which is not a good configuration for creatingβ-units.
Secondly, it was a very unrealistic behavior to completely forget the landmarks that
were not in the view field, even though they had been recently seen. We thought that
adding the ability of remembering what has been previously seen would improve the
behavior of the robot. Moreover, as it has already been mentioned, we want the robot to
imitate the navigational behavior of humans and other animals, and we certainly have
the ability of remembering what has been recently seen. A short term memory, called
Visual Memory, implements this ability, and it is part of the Vision system.

4.2.1 Visual Memory

The Visual Memory stores landmarks and detected obstacles,with their location con-
stantly updated using odometric information. To deal with the imprecision in odometry
we use, again, a fuzzy approach. The odometric information coming from the robot is
indeed fuzzy information about its motion, used to recompute the location of the objects
stored in the Visual Memory. The imprecision of this motion is higher when the robot
turns, and lower if it moves straight.

42 Chapter 4. The Robot Architecture

As the robot moves, the imprecision on these locations growsunless the landmarks
are recognized again by the Vision system (which obviously reduces their location’s
imprecision). When the imprecision about the location of a landmark reaches a given
upper threshold, the landmark is removed from the Visual Memory. The idea behind
this being that the Visual Memory only remembers those landmarks whose location is
precise enough.

The information stored in the Visual Memory is treated by theNavigation system in
the same way as the information coming from the Vision system. The only difference
is that the Visual Memory will be more imprecise than the Vision system. The Pilot
system also uses this information to avoid colliding with remembered obstacles and
landmarks.

4.3 Navigation System

This thesis has been mainly motivated by this system. We haveused the modular view
inspiring the overall robot architecture in the design of the Navigation system. The
overall activity of leading the robot to the target destination is decomposed into a set of
simple tasks. Working with simple tasks instead of using a single large module carrying
out the whole navigation process is the basis ofBehavior-based robotics. The idea is to
divide the overall behavior of the robot into simpler behaviors, each one with its own
goal, acting in parallel. These simpler tasks are much easier to build and debug than
a larger module, since we only have to focus on separately solving smaller problems.
Moreover, it permits us to incrementally increase the complexity of the robotic system,
that is, adding new capabilities, by simply adding new behaviors, without having to
modify already existing code. A detailed description of Behavior-based architectures
was given in Chapter 2.

The Navigation system is defined to be a multiagent system where each agent is
competent in one of these tasks (see Figure 4.4). These agents must cooperate, since an
isolated agent is not capable of moving the robot to the target, but they also compete,
because different agents may want to perform conflicting actions. Again, we use the
bidding mechanism to coordinate the agents. Each agent bidsfor services provided by
other robot systems (Pilot and Vision systems), and an additional agent, the communi-
cation agent, gathers the different bids and determines which one to select at any given
time. This agent is also responsible of all the communication between the Navigation
system and the other systems of the robot. The coordination between the agents is
also made through a common representation of the map. Agentsconsult the map and
the Pilot and Vision systems provide information about the environment —position of
landmarks, obstacles — which is used to update it.

The local decisions of the agents take the form of bids for services and are combined
into a group decision: which set of compatible services to require, and hence, gives us
a handle on the difficult combinatorial problem of decidingwhat to do next. In the next
section we describe in detail the society of agents that models the navigation process.

4.4. The Group of Bidding Agents 43

System
Navigation

bids and
information

MM

CO

information
bids and

Agent Acronyms

MM: Map Manager

RERMTT

RM: Risk Manager
TT: Target Tracker

RE: Rescuer
CO: Communicator

Figure 4.4: Multiagent view of the navigation system

4.4 The Group of Bidding Agents

In the model reported in this thesis we present a group of agents that take care of dif-
ferent tasks that, when coordinated through the bidding mechanism, provide the overall
desired behavior of leading the robot to a target landmark. The tasks are:

• to keep the information on the mapconsistent and up-to-date,

• to keep the target locatedwith minimum imprecision andmove towards it,

• to keep the riskof losing the target low,

• to recoverfrom blocked situations.

Four agents have been designed to fulfill each one of these goals (Map Manager,
Target Tracker, Risk ManagerandRescuer, respectively), plus acommunicatoragent
that is the responsible for communicating the Navigation system with the other robot
systems (Pilot and Vision).

The actions that agents can bid for are:

• Move(direction), instructs the Pilot system to move the robot in a particular
direction,

• Stop, instructs the Pilot system to stop the robot,

• Look(angle), instructs the Vision system to identify all the possible landmarks
that can be found in the area atangle radians from the current body orientation.

Finally, agents may ask one another with respect to the different knowledge they
have. For instance, any agent in the society may request fromthe Map Managerto
compute the location of the target or of a diverting target. Agents may also broadcast

44 Chapter 4. The Robot Architecture

messages to the rest of the agents in the society. For example, the Rescuerinforms
about the target to be reached, and theTarget Trackerinforms about the imprecision on
the target’s location.

In the next sections we describe each of the agents, and theircode schemas can be
found in Section 4.4.6.

4.4.1 Map Manager

This agent is responsible for maintaining the information of the explored environment
in the topological map. The activity of this agent consists of processing the information
associated with the incoming viewframes – expanding the graph, creatingβ-vectors,
and asynchronously changing arcs’ cost labels when informed by other robot systems.
This agent uses the fuzzy beta-coefficient system describedin Chapter 3 to build the
map and answer questions about landmark positions.

TheMap Manageris also responsible for computing the quality of the set of land-
marks in the current viewframe, when required by theRisk Manager. This quality is a
function of the collinearity of the landmarks. Having a setS of landmarks, their quality
is computed as:qs = max{1−Col(S′)|S′ ⊆ S, |S′| = 3} whereCol(S′) is computed
using the equation 3.4.

This agent also computes diverting targets when asked for bytheRescuer. To do so,
it uses the topological map, where all path costs are recorded, to compute which should
be the next region to visit in order to reach the target. A description of the computation
of diverting targets was already given in Chapter 3.

4.4.2 Target Tracker

The goal of this agent is to keep the target located at all times and move towards it.
Ideally, the target should be always within the view field of the camera. If it is not, the
imprecision associated to its location is computed by this agent using the information
of the map. Actions of other systems are required to keep the imprecision as low as
possible.

We model the imprecision as a function on the size of the anglearc,ǫθ, from the
robot’s current position, where the target is thought to be located. When the robot is sure
of the position of the target (because it is in the current view field of the camera) we have
a crisp direction and, hence,ǫθ = 0 and the imprecision is 0. If the target’s location is
obtained from the Visual Memory or computed by theMap Manager, ǫθ is computed as
the size of the interval corresponding to the 70%α-cut of the fuzzy number representing
the heading to the landmark. When the robot is completely lost, any direction can be
correct,ǫθ = 2π, and the imprecision level is 1. Thus, the imprecision levelis computed
as:

Ia =
(ǫθ

2π

)β

(4.2)

whereβ gives a particular increasing shape to the imprecision function. If β is much
smaller than 1, the imprecision increases quickly as the imprecision in angle grows. For
β values well over 1, imprecision will grow very slowly until the error angle gets very
big.

4.4. The Group of Bidding Agents 45

The actions required by this agent are to move towards the target and to look towards
the place where the target is assumed to be. The bids for moving towards the target start
at a valueκ1 (≤ 1) and decrease polynomially to 0, depending on a parameterα.
The rationale for this is that when the imprecision about thetarget location is low, this
agent is confident about the target’s position and thereforebids high to move towards
it. As the imprecision increases, this confidence decreasesand so does the bid. Bids
for looking at the target increase from 0 to a maximum ofκ2 (≤ 1) and then decrease
again to 0. The rationale being that when the imprecision is low there is no urgency
in looking to the target, since its location is known with high precision. This urgency
starts to increase as the imprecision increases. When the imprecision reaches a level in
which the agent has no confidence on the target location, it starts decreasing the bid so
as to give the opportunity to other agents to win the bid. The equations involved are :

bid(move(θ)) = κ1(1 − I1/α
a) (4.3)

bid(look(θ)) = κ2 sin(πIa) (4.4)

whereα controls how rapidly the moving bids decrease, andθ is the crisp angle where
the target is thought to be. The bidding functions are shown in Figure 4.5.

This agent is constantly asking theMap Managerfor the location of the target.
When it receives an answer (obtainingθ andǫθ), it computes the imprecision and in-
forms the rest of the agents about it. If theTarget Trackeris not informed about the
target’s location within a given time limit, it sets the imprecision level to 1.

The behavior described above is applied when the goal is to reach a single landmark.
However, as mentioned in Section 3.4, the goal can also be to cross the edge connecting
two landmarks (if theRescuerhas set it as the diverting target). In this latter case,
this agent is constantly asking for the location of the two landmarks (thus, obtaining
θ andǫθ for each landmark) and computing their associated imprecision. The highest
imprecision is used asIa for computing the bidding values for moving and looking
actions. It is also used to decide where the camera should look; it looks in the direction
of the landmark with highest imprecision. Regarding the motion action, the agent bids
to move in the direction of the angle between the two landmarks.

TheTarget Trackeris also the responsible for deciding whether the robot isat target.
If the target is a single landmark, it considers that the robot has reached the target if the
upper bound of theα-cut of levelφ of the fuzzy number modeling the distance to the
target is less thanδ times the body size of the robot. The parametersφ andδ can be
tuned to modify the accuracy of the agent. In the case of the target being an edge
(between landmarksLl andLr), it checks whether the robot is on the desired side of
line connecting the two landmarks. If the robot is on the leftof the directed line through
Ll andLr, it is on the correct side, that is, the edge has been crossed.If it is on the right
of the line, it means that the robot has not still crossed the edge.

4.4.3 Risk Manager

The goal of this agent is to keep the risk of losing the target as low as possible. While
theTarget Tracker’s goal is to locate the target by maintaining it in the camera’s view
field, this agent tries to keep a reasonable amount of known landmarks, as non collinear

46 Chapter 4. The Robot Architecture

Figure 4.5:Target Tracker’s bidding functions

as possible, in the surroundings of the robot. The rationaleis to have as many visible
landmarks as possible so that theMap Manageris able to compute the location of the
target using the beta-coefficient system when it is not visible nor in the Visual Memory.
The fewer surrounding landmarks whose locations are known,the more risky is the
current situation and the higher the probability of losing the target and getting lost.
Also, the more collinear the landmarks, the higher the errorin the location of the target,
and thus, the higher the imprecision on its location.

We model the risk as a function that combines: 1) the number oflandmarks ahead
(elements in setA), 2) the number of landmarks around (elements in setB), and 3) their
“collinearity quality” (qA andqB). As we have described, these qualities are computed
by theMap Manager. A minimum risk of 0 is assessed when there are at least six
visible landmarks in the direction of the movement and minimally collinear. Although
the locations of only three landmarks are needed in order to use the beta-coefficient
system, we want to have additional landmarks around the robot whose locations are
known, so that there are more chances to compute the target’slocation. A maximum
risk of 1 is assessed when there are no landmarks ahead nor around:

R = 1 − min

(

1, qA

(

|A|

6

)γA

+ qB

(

|B|

6

)γB
)

(4.5)

The valuesγA andγB determine the relative importance of the situation of landmarks
(ahead or around).

Given that the robot cannot decrease the collinearity of thevisible landmarks, the
only way to decrease the risk level is by increasing the number of landmarks ahead and
around. Having more landmarks, besides increasing|A| or |B|, also helps by possibly
increasing the qualitiesqA andqB.

We encourage having landmarks ahead by bidding

bid
(

look
(

random
([

−
π

4
, +

π

4

])))

= γr · R (4.6)

for the action of looking at a random direction in front of therobot and trying to identify
the landmarks in that area, if|A| < 6, and

bid

(

look

(

random

([

+
π

4
, +

7π

4

])))

= γr · R
2 (4.7)

4.4. The Group of Bidding Agents 47

Figure 4.6:Risk Manager’s look bidding functions (look ahead -solid line- and look
behind -dashed line-)

(which is obviously smaller thanγr ·R) for the action of looking at a random direction
around the robot and trying to identify landmarks, if|B| < 6, whereγr is a parameter
to control the maximum value of the bidding function. The bidding functions are shown
in Figure 4.6.

The behavior of this agent also helps theMap Managerbuild the map when the
robot is in an unexplored area. Since it bids for looking for landmarks when there are
not many visible, its bids will be high, and thus new landmarks (if there are landmarks,
obviously) will be identified and the map will be updated.

4.4.4 Rescuer

The goal of theRescueragent is to rescue the robot from problematic situations. These
situations may happen due to two reasons. First, the Pilot can lead the robot to a position
with a long obstacle ahead that cannot be easily avoided. Second, the imprecision of
the location of the target may be too high (over a thresholdIa).

If the robot gets blocked, this agent asks theMap Managerto compute a diverting
target, and informs the rest of the agents about the new target. If the diverting target
computed by theMap Manageris just a direction (this means that the robot should
cross an edge containing a virtual landmark, as explained inSection 3.4), theRescuer
bids for turning the robot in the given direction. In order tohave the robot moving in
this direction for a short period of time, it sets the target to be a landmark that does not
exist. However, the rest of the agents do not know that it doesnot exist, therefore, they
behave as if it was an existing landmark. Thus, theMap Managerwill not be able to
compute its location when asked by theTarget Tracker. This latter agent, after asking
several times for the location of the target and not receiving any answer, will set the
imprecision level to 1, which will cause theRescuerto get active again. The rationale
of this “trick” is that during the time the robot has been moving, it will have probably
(and hopefully) recognized more landmarks so that theMap Managercan compute a
better diverting target. Finally, if theMap Managerfails to compute a diverting target,
the Rescuerbids for making the robot turn around (a random angle inπ±π

6), hoping
again that with the new direction it detects landmarks that help computing the location
of the target or a diverting target. In case the current diverting target cannot be reached,
this agent will ask for a new diverting target for the initialtarget.

On the other hand, if the imprecision of the target’s location is too high, the agent

48 Chapter 4. The Robot Architecture

bids for stopping the motion and starting a visual scan around the robot, trying to detect
as many landmarks as possible. The scan will stop when the imprecision of the location
of the target has decreased to an acceptable level, either because it has been recognized
by the Vision system or because its location has been computed by theMap Manager
using other landmarks’ locations. Since in this situation no obstacle has been detected,
theRescuerassumes that the path to the target is not blocked, so there will not be any
target change. However, if at the end of the scanning the imprecision level is still too
high, it will ask for a diverting target.

This agent also performs a visual scan at the very beginning,when the initial target
is given, in order to detect some landmarks and start building the map before the robot
begins moving to the target. Only after the scan is completed, this agent will inform the
other agents what is the target to be reached.

The bidding values for the actions required by this agent areconstant (parameter
ω) and should be higher than those of the other agents (ω > max(κ1, κ2, γr)), since it
is absolutely necessary to execute the actions in order to continue the navigation to the
target.

4.4.5 Communicator

The multiagent system implementing the navigation algorithm communicates with the
remaining robot systems through theCommunicatoragent. This agent receives the in-
formation about the visible landmarks and obstacles detected, which is passed to the
appropriate agents (Map ManagerandRescuer). This agent also receives bids for ac-
tions from the other agents and is responsible for determining which one to select and
send as the Navigation system’s bid. The actions required may be conflicting or not.
For instance, an agent requiring the camera to look behind and another requiring it to
identify a new landmark on the right, bid for conflicting actions, that is, actions that
cannot be fulfilled at the same time. On the contrary, an agentrequiring the robot to
move forward, and an agent requiring the camera to look behind might be perfectly
non-conflicting. It can be easily seen that the conflicts occur when the actions require
the use of the same resource (robot motion or camera control). Thus, the request for
actions will be separately treated depending on the resource required:Move andStop
actions on one side, andLook actions on the other. TheCommunicatoragent receives
the bids for the two different types of actions, and selects the moving action with the
highest bid and the looking action with the highest bid. The resulting two action-bid
pairs are sent to the Pilot and Vision system, respectively.This agent waits some time
before processing the received bids, so that all the agents have time to send their bids. If,
during this time window, an agent sends more than one bid for the same type of action,
it replaces the previously sent bid. When the time window expires, theCommunicator
processes all the received bids and determines the winners.

As already mentioned, the bidding mechanism implements a competitive coordina-
tion mechanism. This mechanism has problems with selfish agents. The problem arises
when there is one (or more) agents that always bids very high so that it wins all the
bids, thus, not letting the other agents having their actions executed. In this case, there
is no coordination at all between the agents, and it is very difficult, if not impossible,
to achieve the goal of reaching the target destination. For instance, if we set theTarget

4.4. The Group of Bidding Agents 49

Trackerto bid always higher than the Pilot system, the robot would not be able to avoid
any obstacle, and would get stuck if any was encountered. To avoid such problem, the
agents and systems should bid rationally, that is, bidding high only when the action
is found to be the most appropriate for the current situation, and bidding low when it
is not clear that the action will help, giving the opportunity to other agents to win the
bid. Thus, special attention must be payed when designing the agents and their bidding
functions.

To solve this problem we could use a more economic view of the bidding mecha-
nism, assigning a limited credit to each agent, and allowingthem to bid only if they had
enough credit. With this new system there should also have tobe a way to reward the
agents. If not, they would run out of credit after some time and no agent would be able
to bid. However, we face the credit assignment problem, thatis, deciding when to give
a reward and which agent or set of agents deserve to receive it. This problem is very
common in multiagent learning systems, especially in Reinforcement Learning, and
there is not a general solution for it. Each system uses an ad hoc solution for the task
being learned. Other possible solutions would be to have a mechanism to evaluate the
bidding of each agent, assigning them succeeding or failingbids, or some measure of
trust, in order to take or not take into account their opinions. However, we would have
again the credit assignment problem. Thus, in the multiagent system reported in this
thesis we have designed the agents so that they bid rationally, leaving the exploration
of these evaluation mechanisms as a line of future research.

4.4.6 Agents code schemas

In this section we present the code schemas for the agentsMap Manager, Target
Tracker, Risk ManagerandRescuer, and also for the Pilot system. The schemas have
some parameters, such as the target that has to be reached, its initial heading, and some
other particular parameters for each agent (bidding function parameters, thresholds...).
These particular parameters define the behavior of the agents, and thereby, the overall
behavior of the robot. Varying the values of the parameters,we may obtain better or
worst navigation performances, and we may also adjust the conservativeness or riski-
ness of the robot. Thus, appropriately tuning these parameters is very important. In the
next chapter we explore the use of learning techniques in order to do such parameter
tuning.

When describing the algorithm schemas, the speech acts willappear as expressions
in a KQML-style language [26]. Agents refer to themselves bythe special symbol
“self”. When referring to all the agents of the society, theyuse the symbol “all”.

Agents have a hybrid architecture. We will use the followingconstruct to model the
reactive component of agents:

On conditiondo action

Whenever the condition holds (typically an illocution arriving to the
agent), the action is executed immediately. The illocutions used by the
agents are the following: ask(asking agent, asked agent, question) and
inform(informing agent, informed agent, information).

50 Chapter 4. The Robot Architecture

SystemPilot(ν,max dist not looking,exp) =

Begin deliberative
Repeat

inform(self,Vision System,odometricinformation)
〈avoid,θ〉 := avoid obstaclesof Visual Memory()
If avoidthen inform(self,Coord,{(Move(θ), ν)})

inform
(

self,Coord,
{(

Look(0),
(

dist since last look
max dist not looking

)exp)})

Until
End deliberative

Begin reactive
On bumpersactivedo

backupsafedistance()
〈obstacledetected,L1, L2〉 := updateVisual Memory()
If obstacledetectedthen inform(self,NavigationSystem,obstacle(L1, L2))

On inform(VisionSystem,self,currentview(CV) do
〈avoid,θ〉 := avoid obstacles(CV)
If avoidthen inform(self,Coord,{(Move(θ), ν)})

End reactive

End system

4.4. The Group of Bidding Agents 51

SystemNavigationSystem(α, β, κ1, κ2, φ, δ, γA, γB, γr, Ia, ω) =

Agent MM() =

Begin reactive
On inform(CO,self,currentview(CV)) do

updatemap(CV)

On inform(CO,self,obstacle(L1, L2)) do
updateobstacle(L1, L2)

On ask(X,self,position-landmark?(L)) do
〈θ, ǫθ, d, ǫd〉 := computelandmarkposition(L)
inform(self,X,position-landmark(L, θ, ǫθ, d, ǫd))

On ask(X,self,position-landmarks?(L1, L2)) do
〈θ1, ǫθ1

, d1, ǫd1
〉 := computelandmarkposition(L1)

〈θ2, ǫθ2
, d2, ǫd1

〉 := computelandmarkposition(L2)
inform(self,X,position-landmarks(L1, θ1, ǫθ1

, d1, ǫd1
, L2, θ2, ǫθ2

, d2, ǫd2
))

On ask(X,self,landmarks-quality?)do
〈|A|, |B|, qA, qB〉 := computelandmarksquality()
inform(self,X,landmarks-quality(|A|, |B|, qA, qB))

On ask(X,self,diverting-target?(L))do
〈T, Ll, Lr, θ, type〉 := computediverting target(L)
If type=landmarkthen

inform(self,X,diverting-target(T))
else iftype=edgethen

inform(self,X,diverting-edge(Ll, Lr))
else iftype=directionthen

inform(self,X,diverting-direction(θ))
else iftype=failedthen

inform(self,X,diverting-target-failed)
End reactive

End agent

52 Chapter 4. The Robot Architecture

Agent TT(α, β, κ1, κ2, φ, δ) =
Begin deliberative

targetset := false
initial targetreached := false
Repeat

If targetsetthen
If targettype = landmarkthen

ask(self,MM,position-landmark?(target))
else

ask(self,MM,position-landmarks?(ELl,ELr))
endif

endif
Until initial targetreached

End deliberative

Begin reactive
On inform(RE,self,initial-target(T))do

targetset := true
targettype := landmark
initial target := T
target := initial target

On inform(RE,self,target(T))do
targettype := landmark
target := T

On inform(RE,self,target(Ll,Lr)) do
targettype := edge
〈ELl, ELr〉 := 〈Ll, Lr〉

On inform(MM,self,position-landmark(target,θ, ǫθ,dist,ǫdist)) do
Ia := (ǫθ

2π)β

inform(self,all,imprecision(Ia))

inform(self,CO,{(Move(θ), κ1(1 − (I
1/α
a))), (Look(θ), κ2 sin (πIa))})

[min,max] :={dist}φ

at target := max≤ δ*bodyshape
If at targetthen inform(self,all,at-target(target))

4.4. The Group of Bidding Agents 53

On inform(MM,self,position-landmarks(ELl, θl, ǫθl
, dl, ǫdl

,
ELr, θr, ǫθr

, dr, ǫdr
)) do

I l
a := (

ǫl

θ

2π)β

Ir
a := (

ǫr

θ

2π)β

Ia := max(I l
a, Ir

a)
anglemove :=(θl + θr)/2
If I l

a > Ir
a then anglelook := θl

elseanglelook := θr

inform(self,all,imprecision(Ia))

inform(self,CO,{(Move(angle move), κ1(1 − (I
1/α
a)))

(Look(angle look), κ2 sin (πIa))})
edgecrossed := checkedgecrossed(θl, θr)
If edgecrossedthen inform(self,all,edge-crossed(ELl,ELr))

On inform(self,self,at-target(initialtarget))do
initial targetreached := true

End reactive
End agent

54 Chapter 4. The Robot Architecture

Agent RM(γA, γB, γr) =

Begin deliberative
targetset := false
initial targetreached := false
Repeat

If targetsetthen
ask(self,MM,landmarks-quality?)

endif
Until initial targetreached

End deliberative

Begin reactive
On inform(RE,self,initial-target(T))do

targetset := true
initial target := T

On inform(MM,self,landmarks-quality(|A|,|B|,qA,qB)) do

R := 1 − min
(

1, qA

(

|A|
6

)γA

+ qB

(

|B|
6

)γB
)

If |A| < 6 then
inform(self,CO,{(Look(random angle

([

−π
4 , +π

4

])

, γrR)})
else if|B| < 6 then

inform(self,CO,{(Look(random angle
([

+π
4 , + 7π

4

])

, γrR
2)})

endif

On inform(TT,self,at-target(initialtarget))do
initial targetreached := true

End reactive

End agent

4.4. The Group of Bidding Agents 55

Agent RE(Ia, ω) =
Begin reactive

On inform(CO,self,new-target(T))do
initial scan()
inform(self,all,initial-target(T))

On inform(CO,self,Blocked)do
ask(self,MM,diverting-target?(initialtarget))

On (inform(TT, self, imprecision(Ia)) and (Ia > Ia)) do
angle := compute scan angle()
If scan finished(angle) then

ask(self,MM,diverting-target?(initialtarget))
else

inform(self,CO,{(Stop, ω), (Look(angle), ω)})

On inform(TT,self,at-target(T))or inform(TT,self,edge-crossed(Ll, Lr)) do
target := initial target
inform(self, all, target(target))

On inform(MM,self,diverting-target(T))do
inform(self, all, target(T))
target := T

On inform(MM,self,diverting-edge(Ll, Lr)) do
inform(self, all, target(Ll, Lr))

On inform(MM,self,diverting-direction(θ)) do
inform(self, all, target(faketarget))
inform(self,CO,{(Move(θ), ω)})

End reactive

End agent

End system

56 Chapter 4. The Robot Architecture

4.5 Future Work

We should explore the feasibility of using an economic view of the bidding mechanism,
as mentioned in Section 4.4.5, and analyze how to solve the difficult problem of credit
assignment.

The design of each one of the agents of the Navigation system should be revised
according to the results obtained through the experimentation. This revision could range
from simple tuning of some of the agents’ behavior to the inclusion of new agents. Some
of this changes will be discussed in Chapter 6, devoted to theexperimentation with a
real robot.

Chapter 5

Simulation Results

In this chapter we describe the experiments we have carried out through simulation.
We have used simulation for three different tasks: firstly, to check that the multiagent
Navigation system we have designed works properly; secondly, we have applied Rein-
forcement Learning techniques in order to learn a policy on the use of the camera; and
finally, we have used a Genetic Algorithm approach to tune theparameters of the agents
in the Navigation system.

For these different tasks, we have used two simulators. We started using the Webots1

simulator. On this simulator we implemented the Navigationsystem and we also used
it for the Reinforcement Learning task. However, we found some problems with the
Webots simulator, mainly related to batch execution, whichmade the experimentation
very slow. Although we were able to get results when used for Reinforcement Learning,
we decided to develop our own simulator, to do extensive simulation with no problems.
We used this new simulator to run again the multiagent Navigation system, and for the
Genetic Algorithm approach to tune the parameters.

5.1 The Simulated System

It has to be pointed out that the overall system (that is, the Navigation, Pilot and Vision
systems) used in the simulations is not exactly the same as the one described in the
previous chapter (also described in [13]). Since the beginning of this research, four
years ago, the Navigation, Pilot and Vision systems have been evolving (agents of the
Navigation system have been added, modified and removed, andthe capabilities of the
Pilot and Vision systems have also changed) until we have reached what, by now, is
the definitive version, which has just been described. This evolution has been guided
by the experimentation, both on simulation and with the realrobot. The simulation
experiments described in this chapter show the performanceof a previous version of
our system [59, 12].

One of the main differences between the simulated system andthe definitive one
is that in the simulated one the Vision system did not provideinformation about the

1From Cyberbotics, http://www.cyberbotics.com

57

58 Chapter 5. Simulation Results

distance to the visible landmarks; it provided the Navigation system only with angular
information. Moreover, the simulated Vision system had no range limitation, that is, it
could identify any landmark, no matter how far it was, as longas it was in the view field
of the camera. Obviously, this does not hold on the real Vision system.

Due to this lack of distance information, theMap Manageragent had to compute
the distance to the landmarks using the change in angle of each landmark on successive
viewframes. Since the change in angle can vary very little for the landmark the robot is
going towards (i.e. the target), it was very difficult to accurately compute the distance
to the target. In the simulated system, there was an additional agent, theDistance Esti-
mator, that helped on computing the distance to the target. The role of this agent was to
move the robot orthogonally with respect to the line connecting the robot and the target
landmark while pointing the camera in the direction of the target, so that the change in
angle was maximal, permitting theMap Managerto compute the distance accurately.
TheDistance Estimatoragent computed the imprecision associated to the distance to
the target. This imprecision is computed asId = 1 − 1/eκǫt, whereκ is a parameter to
control the shape of the function, andǫt is the error in distance, and, similarly to what
theTarget Trackerdoes, it is computed as the size of the interval corresponding to the
70%α-cut of the fuzzy number representing the distance to the target. TheDistance
Estimatoragent bids were a function on this imprecision. If the imprecision was high,
it bid high to move the robot orthogonally, so the distance tothe target could be com-
puted with a lower error.. On the other hand, if the imprecision was low, so were the
bids. This agent played a very important role at the beginning of the navigation, since
the distance to the target was unknown, and therefore, the imprecision maximal. Thus,
theDistance Estimatorwould bid very high in order to let theMap Managerget a first
estimate of the distance. This agent was also responsible for deciding if the robot had
reached the target, since it had the distance information. On the definitive system, this
is responsibility of theTarget Tracker.

Another important difference is that the simulated system did not use Visual Mem-
ory. That is, the Navigation system was only informed about the landmarks currently
visible within the view field of the camera. This restrictionmade it difficult to create
“good” beta-units, since all the visible landmarks were within a narrow view field, and
thus, very collinear.

TheRescueragent also had some differences: apart from getting active when the
robot was blocked and when the imprecision in the target’s location was too high, it also
got active when the risk (computed and broadcasted by theRisk Manager) was over a
threshold. Furthermore, its behavior was to always visually scan the surroundings of
the robot and, after that, ask for a diverting target, not taking into account the reason of
its activation.

There were also differences on the Pilot system. Another partner on the project we
are involved in was responsible of building the Pilot system. Therefore, initially, we did
not focus on this system, and did not worry about how it was designed. As long as it
was able to avoid the obstacles encountered in its way, its design did not affect at all our
coordination mechanism nor the design of the agents. For this reason, we started using a
built-in pilot system of the Webots simulator that used simulated sonar sensors in order
to avoid obstacles. In the real robot, however, such sonar sensors are not available, and,

5.2. Multiagent Navigation System Simulation 59

as explained in the previous chapter, the Pilot system we finally implemented is only
able to detect obstacles by bumping into them.

A final difference is that the mapping and navigation method used was not as ex-
plained in Chapter 3. Firstly, the criterion used to select topological regions was based
only on the collinearity of the region and its size, thus, permitting overlapping regions,
and not assuring a complete representation of the environment. And secondly, the com-
puted diverting targets were always single landmarks; the computation of edges as di-
verting targets was introduced after experimenting with the real robot.

Despite all these differences, the basic elements of our approach have not been dras-
tically modified during the evolution of the system: the bidding coordination mecha-
nism has not been changed at all, and the mapping method has experienced only slight
modifications.

5.2 Multiagent Navigation System Simulation

The goal of simulation was to check whether our approach, that is, the architecture,
the bidding coordination mechanism and the mapping method,could lead to a robust
navigation system.

We implemented the agents of the Navigation system and tested the algorithm on
the Webots simulator and in our own developed one. Each agentwas executed as an
independent thread, and they used shared memory for messagepassing. We also simu-
lated the Pilot and Vision systems on both simulators. We setthe parameters of each of
the agents by hand. We first set their values intuitively, andslightly modified them after
some simulation trials.

As a first step, we checked whether the bidding mechanism was able to adequately
coordinate the agents of the Navigation system and the Pilot, so that the task of reach-
ing the target was accomplished. The Pilot system used was not able to inform about
the presence of long obstacles between landmarks, althoughit would avoid them. For
this reason, we were not still checking the mapping and navigation capabilities of the
system.

Figure 5.1 shows a navigation run in the Webots simulator. Itshows the path fol-
lowed by the robot from a starting point to a target landmark.The environment was
composed by a set of landmarks (shown as circles), a river (the thick blue traversing
line) with a couple of bridges, and some fences and other obstacles. These obstacles
did not occlude the target landmark, so it was visible from any location of the envi-
ronment. The task to be performed was to reach the target (at the left-hand side of the
world) avoiding any obstacle encountered on the way.

At the very beginning, the distance to the target is unknown,so theDistance Esti-
matoragent (DE) bids very high to move the robot orthogonally to the line connecting
it to the target and looking to the target, so that theMap Managercan estimate the
distance to the target. TheTarget Trackeragent (TT) bids for moving and looking to-
wards the target, but the bids of DE are higher and the robot moves orthogonally. As
the robot moves, theMap Managercomputes the distance to the target, and the impre-
cision computed by the DE decreases, causing its bids also todecay. At a given point,
the bids of TT are higher than those of DE, and the robot startsgoing towards the tar-

60 Chapter 5. Simulation Results

Figure 5.1: Robot’s path from starting point to the target

get. Since there are no obstacles around, the Pilot does not bid at all. However, after
some advance, the robot encounters an obstacle, and the Pilot bids very high to avoid
it, surpassing the bids of TT and DE. When the obstacle has been totally avoided, the
Pilot stops bidding, the bids of TT win again, and the robot moves towards the target.
This situation is repeated a couple of times until the robot finally reaches the target.

Although the environment used in this first step was simple, mainly because of
the constant visibility of the target, simulations showed that the bidding coordination
mechanism worked properly, since it was able to coordinate the different agents and the
Pilot.

The next step was to test the mapping and navigation capabilities of the Navigation
system. In this step we used our own developed simulator, with a better Pilot system,
capable of informing about the linear obstacles between landmarks, and with more
realistic environments including occluding obstacles, sothat the target was not visible
all the time.

In Figure 5.2 we see how the Navigation system computes diverting targets for
reaching the initial target when this is lost. In this environment, filled polygons are
occluding obstacles, and empty ones are non-occluding ones, thus, permitting the visi-
bility of the target from the starting point. At point A, it sees the target and starts going
towards it. However, at point B, it detects an obstacle, so the Pilot forces the robot
to turn. When it reaches point C, it cannot see the target anymore, as it is behind an
occluding obstacle. At this point, a diverting target is computed (in this case, landmark
30 is selected). The robot starts going to this diverting target. Once reached (point D),
a new diverting target is computed (landmark 38 is selected), and the robot goes toward
it. At point E, after reaching the current diverting target,a new one is computed (land-
mark 12), which is reached at point F. From this point, it seesthe initial target again,

5.2. Multiagent Navigation System Simulation 61

Figure 5.2: Computing diverting targets

Figure 5.3: Associated map

62 Chapter 5. Simulation Results

goes straight towards it, and finally reaches the target.
Someone may ask why the Navigation system computed so many diverting targets,

instead of trying to go towards the initial target more frequently. The reason was that
the risk was too high very often. This was because of the narrow view field of the
camera and the fact that the system was not using Visual Memory, thus, having too
few landmarks in sight very often. Although the performancewas good enough – the
robot reached the target – this behavior of constantly computing diverting targets was
not what we really wanted. Moreover, in the situation of the robot being in an area with
very few landmarks, possibly seeing only the target, the risk would be very high, but it
would not be a wise decision to stop going towards the target and, instead, compute a
diverting target. That is why theRescueragent was modified so that it did not take into
account the risk, as presented in the previous chapter.

In Figure 5.3 the map generated while reaching the target is shown. Although inter-
nally theMap Manageragent stores the map as a graph, here, for clarity, we show the
triangular regions corresponding to the nodes of this graph. As can be seen, the map
has many overlapping regions, unconnected regions and regions with obstacles inside.
Obviously, it is not a very good representation of the environment. In order to obtain a
better map of the environment, we modified the mapping algorithm so that it included
the constraints presented in Chapter 3. As will be seen in theexperimentation with the
real robot (Chapter 6), the modified mapping algorithm obtains much better maps.

Although in the simulation we simplified the task in comparison to navigating
through a real environment (the Vision system worked perfectly, without any limitation
on its view range, the Pilot used sonars for obstacle avoidance), the results obtained,
showing that the coordination and mapping worked well, werevery promising and en-
couraged us to keep working on the refinement of the system in order to test it on the
real robot. However, even though the main experimentation was to be done with the
real robot, we still employed simulation to apply Machine Learning techniques in order
to automatically tune the parameters and obtain better performance. In the following
sections we describe how we have applied these techniques.

5.3 Reinforcement Learning

As mentioned, each of the agents within the Navigation system has a bidding function
that is controlled by a set of internal parameters. These parameters need to be tuned in
order to achieve the best performance of the Navigation system and of the overall sys-
tem. Although, as shown in the previous section, we achievedgood results with hand-
tuned parameters, we wanted to explore if there were other parameter configurations
that led to better performance of the system. Adjusting these parameters manually can
be very difficult, particularly because of the tradeoffs confronting the top-level agents.
An alternative to manual tuning is to employ Machine Learning techniques, specifically
Reinforcement Learning methods [64]. In this section, we describe some experiments
to test the feasibility of applying Reinforcement Learningwithin this multiagent sys-
tem.

Reinforcement Learning is one of the most commonly used learning techniques in
Robotics. In Behavior-based architectures learning can beapplied at two levels: at
the coordination level, where the goal is to apply learning to the coordination system

5.3. Reinforcement Learning 63

MM

CO

RELA

bids and
information

bids and
information

Navigation
System

Agent Acronyms

MM: Map Manager
LA: Learning Agent
RE: Rescuer
CO: Communicator

Figure 5.4: Modified navigation system, with the new agent

[44, 28], or at the behavior level, where the goal is to apply learning to the individual
behaviors of the system [45, 14]. In our case, we have taken the latter approach [10, 11].

Ideally, we would like to apply Reinforcement Learning to tune all of the parameters
of all of the agents in the system. However, this is a very difficult problem, and it is
not clear that Reinforcement Learning is the best solution at all levels of the system.
Instead, we have chosen to focus on a particular learning problem within the Navigation
system. Reinforcement Learning is most needed and most appropriate in cases where
there is a complex, quantitative tradeoff between behaviors. In such cases, manual
tuning is difficult, and the quantitative criterion of maximizing expected reward, which
is the goal of Reinforcement Learning, permits us to represent the tradeoff nicely.

Within the Navigation system, such a tradeoff exists between theTarget Tracker
agent, theRisk Manager, and theDistance Estimator— recall that we use the initial
version of the system, as described in Section 5.1. TheTarget Trackerwants to know the
exact heading and distance to the target at all times. This can be achieved by pointing
the camera at the target and moving towards it. TheRisk Managerwants to ensure
that the robot is surrounded by a rich network of landmarks sothat the robot does not
get lost. This can be achieved by pointing the camera in various directions around the
robot to identify and track landmarks. Finally, theDistance Estimatorseeks to know
accurate distances to the target landmark. This can be achieved by pointing the camera
in the direction of the target while moving the robot orthogonally to the direction of
the target. In addition to this conflict, the Navigation system must not monopolize the
camera, because the Pilot needs to use it for obstacle avoidance.

Instead of trying to learn the appropriate values for each ofthe parameters of these
agents, we propose to replace theTarget Tracker, theRisk Manager, and theDistance
Estimatorby a newLearning Agentthat learns its behavior through Reinforcement
Learning. We formulate the reward function for this agent sothat it is rewarded for

64 Chapter 5. Simulation Results

reaching the current target location while minimizing the use of the camera. The two
remaining agents have very different roles. TheMap Managermaintains the beta-
coefficient map, but does not bid on actions. The only remaining bidding agent is the
Rescuer, which is responsible for the higher-level choice of diverting targets when-
ever the robot becomes blocked. This activity is better-implemented by path planning
algorithms than by Reinforcement Learning, so we have not included theRescuer’s re-
sponsibilities within theLearning Agent. The modified architecture for the Navigation
system is shown in Figure 5.4.

5.3.1 The Task to be Learned

The task confronting theLearning Agentis to choose actions (for both motion and
vision) in order to reach the current target location while minimizing the use of the
camera. TheMap Managerinforms theLearning Agentabout the target location. If
the robot becomes blocked, theRescuerwill ask theMap Managerfor a new target (a
diverting target), and then theLearning Agentwill take control and choose actions to
reach that new target. Once the diverting target is reached,theRescuermay be able to
set the current target to be the original goal, and then theLearning Agentwill attempt
to move to that target (and hence, solve the original task).

5.3.2 The Reinforcement Learning Algorithm

There are two general types of Reinforcement Learning algorithms: Model-based and
Model-free. Model-based algorithms learn a transition model P (s′|s, a) for the envi-
ronment, wheres is the state of the environment at timet, a is an action to be executed,
ands′ is the resulting state of the environment at timet + 1. Model-based algorithms
also learn a reward modelR(s, a, s′), which gives the expected one-step reward of
performing actiona in states and making a transition to states′. Once these models
have been learned, dynamic programming algorithms [6] can be applied to compute the
optimal value functionV ∗ and the optimal policyπ∗ for choosing actions.

In contrast, model-free methods (such as Q learning and SARSA(λ)) directly learn a
value functionV ∗ by repeatedly interacting with the environment without first learning
transition or reward models. They rely on the environment to“model itself”. For robot
learning, however, model-free methods are impractical, because they require many
more interactions with the environment to obtain good results. They make sense in
simulated worlds where the cost of performing an action can be much less than the cost
of storing the transition and reward models, particularly if the environment is evolving
over time. But the cost of performing an experimental actionwith a real robot is very
high.

Hence, for our experiments, we have chosen the model-based algorithm known as
Prioritized Sweeping [49]. Prioritized Sweeping works as follows. At each time step,
the learner observes the states of the environment, chooses an actiona, performs the
action, receives a one-step rewardr, and observes the resulting states′. The learner then
updates its estimate ofP (s′|s, a) and ofR(s, a, s′) using the observed result states′

and the observed rewardr. Finally, the learner performs thek most important Bellman

5.3. Reinforcement Learning 65

backups to update its estimate of the value functionV . A Bellman backup in states is
computed as follows:

V (s) := max
a

∑

s′

P (s′|s, a)[R(s, a, s′) + V (s′)]

This is essentially a one-step lookahead that considers allpossible actionsa and all pos-
sible resulting statess′, computes the expected backed-up value of eacha, and assigns
the maximum such value to be the new estimate ofV at states.

Prioritized Sweeping maintains a maximizing priority queue of states in which it
believes a Bellman backup should be performed. First, it performs a Bellman backup
for the most recent states. In each Bellman backup, it computes the change in the value
V (s) resulting from the backup:

∆(s) =

∣

∣

∣

∣

∣

V (s) − max
a

∑

s′

P (s′|s, a)[R(s, a, s′) + V (s′)]

∣

∣

∣

∣

∣

After performing the Bellman backup, Prioritized Sweepingconsiders all statess− that
are known predecessors ofs, and computes the potential impactC of the change in
V (s) on the change in the value ofs− according to

C(s−) =
∑

a

P (s|s−, a)∆(s)

It then places the states− on the priority queue with priorityC(s−). Finally, Prioritized
Sweeping performsk − 1 iterations in which it pops off the state with the maximum
potential impact, performs a Bellman backup in that state, and then computes the po-
tential impact of that backup on all predecessor states. In our experiments,k = 5. (In
our implementation, we actually use the state-action, orQ, representation of the value
function rather than the state value functionV . We have described the method usingV
in order to simplify the presentation.)

Prioritized Sweeping is essentially an incremental form ofvalue iteration, in which
the most important updates are performed first. Because every interaction with the
environment is applied to update the model, Prioritized Sweeping makes maximum
use of all of its experience with the environment. Prioritized Sweeping is an “off-
policy” learning algorithm. During the learning process, any exploration policy can be
employed to choose actions to execute. If the exploration policy guarantees to choose
every action in every state several times, then PrioritizedSweeping will converge to
the optimal action-selection policy. We employǫ-greedy exploration. In this form of
exploration, when the robot reaches states, it executes a random action with probability
ǫ. With probability1− ǫ, it executes the action that is believed to be optimal (according
to the current value functionV). Ties are broken randomly.

We represent both the transition modelP (s′|s, a) and the reward modelR(s, a, s′)
by three-dimensional matrices with one cell for each combination ofs, s′, anda. This
technique will only work if the state and action spaces are small. There are two reasons
for this. First, the tables must fit into memory. Second, the time required for learning
is proportional to the number of cells in these tables, because theLearning Agentmust

66 Chapter 5. Simulation Results

0

3

4

5 1

2

Figure 5.5: Division of environment in sectors. The arrow shows the direction in which
the robot is facing (direction of motion, not direction of gaze)

experience multiple visits to each states so that it can perform each actiona several
times and gather enough data to estimateP (s′|s, a) andR(s, a, s′). Hence, the most
challenging aspect of applying Reinforcement Learning is the proper design of the state
representation.

State Representation

We want theLearning Agentto learn a general policy that works for any environment,
independently of the locations of the landmarks and targets. Hence, our state represen-
tation must not directly employ the locations of the landmarks. Moreover, the robot
cannot directly observe the complete state of the environment, which would include the
location of the robot, all obstacles, and all landmarks! Instead, the task of the robot is
to learn, under conditions of incomplete knowledge, about the locations of obstacles,
landmarks, and targets.

State spaces that encode incomplete knowledge are known as “belief state spaces”
[15]. The purpose of a belief state representation is to capture the currentstate of
knowledgeof the agent, rather than the current state of the external world. In our case,
the Learning Agentis trying to move from a starting belief state in which it knows
nothing to a goal belief state in which it is confident that it is located at the target
location. Along the way, it seeks to avoid getting lost (which is a belief state in which
it does not know its location relative to the target position).

To explain our state representation, we begin by defining a set of belief state vari-
ables. Then we explain how these are discretized to provide asmall set of features each
taking on a small set of values, so thatP (s′|s, a) andR(s, a, s′) can be represented
with small tables.

At any given point in time, the headings to all objects (landmarks and the target
position) are divided into six sectors. The field of view of the robot is 60 degrees, so
at any point in time, the robot can observe one sector, see Figure 5.5. For each sector,
we represent information about the number of landmarks believed to be in that sector
and the precision of our beliefs about their headings and distances. This information
is gathered from an initial version of the Visual Memory thatconstantly updates the
location of the seen landmarks, and to which theLearning Agenthas access.

Given these sectors, the following state variables can be defined:

• Distance to target, and its imprecision,D(t), Id(t)

5.3. Reinforcement Learning 67

• Heading to target, and its imprecision,H(t), Ih(t)

• The landmarks in each sector,L(s) = {l1, ..., lns
}

• Number of landmarks in each sector,N(s) = min(4, |L(s)|)

• Average imprecision of landmarks in each sector,I(s) =
1

N(s)

∑

l∈Best(4,L(s)) I(l)

We now explain each of these. The distanceD(l) to a landmark (orD(t) to the target)
is a fuzzy number in the range[0,∞]. The heading to a landmarkH(l) (or H(t) to the
target) is a fuzzy number with range[0, 2π]. For each of these, its imprecision (Id(l) for
distance,Ih(l) for heading) is defined by taking the size of the interval corresponding
to the 70%α-cut of the fuzzy number.

The imprecision of a landmark is computed using the equation3.3 already given in
Section 3.2.2:

I(l) = λ · tanh(β · Id(l)) + (1 − λ) ·
Ih(l)

2π

For an explanation of the equation see the mentioned section.
We summarize the agent’s knowledge of the landmarks in each sector by averaging

the imprecision of the four most-precisely-known landmarks. The functionBest : N ×
2L → 2L selects a subset,B = Best(n, L), of a group of landmarks,L = {l1, ..., lm},
such that|B| ≤ n ∧ ∀l∈B∀l′∈L−BI(l) ≤ I(l′). Having 4 landmarks in one sector is
already very good, since only 3 landmarks are needed to use the beta-coefficient system
network. Furthermore, we do not want these measures to be affected by bad landmarks
when we have some that are good enough. That is why we useBest(4, L(s)) when
computingI(s).

Features

After computing these state variables, we combine and discretize them to define a small
number of features each of which takes on a small number of values. These features
define the state space, and they are used to access the tablesP (s′|s, a), R(s, a, s′) and
V (s) in the learning phase, and also to accessπ(s) for policy exploitation.

We employ the following features:

• Target Distance,D(t), discretized to 5 intervals.

• Target Location Imprecision: measure of imprecision on thelocation of the target,
I(t), discretized to 7 intervals.

• Landmark Count: average number of landmarks over the six sectors,
C = 1

6

∑5
s=0 N(s), discretized to 4 intervals.

• Landmark Imprecision: average imprecision of landmarks’ locations in each sec-
tor, I = 1

6

∑5
s=0 I(s), discretized to 7 intervals.

This gives a total of 980 belief states.

68 Chapter 5. Simulation Results

Actions

Just as Reinforcement Learning requires careful design of the state space to ensure that
it is compact, it also requires careful design of the action set to ensure that it is small
but also sufficient for the robot to achieve its goals.

Physically, the robot is able to simultaneously perform twotypes of actions:moving
actions andlookingactions. Moving actions make the robot move in a given direction.
Looking actions employ the camera to identify or track landmarks in the environment in
specified sectors. The Vision system can either search for new landmarks or re-acquire
already-detected landmarks, but it is not able to do both things at the same time, because
different image processing routines are required for each.In either case, however, the
Vision system returns the heading and distance to the landmarks it detects.

An additional constraint on the design of actions is that theVision system is most
effective when the robot is moving in certain directions relative to the landmarks being
observed.

Given these constraints, we have designed the following setof actions for theLearn-
ing Agent:

• Move Blind (MB): move toward the target (i.e., in the direction in which the
target isbelievedto be). Do not use the Vision system.

• Move and Look for Landmarks (MLL): move toward the target. Point the camera
in the sector that contains the fewest number of known landmarks, and look for
new landmarks in this sector.

• Move Orthogonally to Target (MOT): move orthogonally to thedirection of the
target. Point the camera at the target and attempt to improvethe precision of the
heading and distance to the target.

• Move and Verify Landmarks (MVL): move toward the target. Point the camera
to the sector with the maximum imprecision,I, and attempt to re-acquire known
landmarks and measure their heading and distance more accurately.

• Move and Verify Target (MVT): move toward the target. Point the camera at
the target and attempt to re-acquire it and measure its heading and distance more
accurately.

These actions should affect the state variables as follows.All actions except MOT
make the distance to the target decrease. MB makes all imprecisions grow. MLL should
increase the number of detected landmarks. MOT should reduce the imprecision about
the target’s location, while MVL should reduce the overall imprecision. MVT also
reduces the imprecision of the target’s location, but not asmuch as MOT. All actions
require that the heading to the target is known (at least approximately). The heading
is chosen as the center of the fuzzy interval forH(t). If the heading is completely
unknown, the center of this interval isπ. This causes the robot to “pace” back and
forth, turning 180 degrees (π radians) each time an action is executed.

We have assigned an immediate reward to each action to reflectthe load on the
Vision system and the motion system. The rewards are negative, because they are costs.

5.3. Reinforcement Learning 69

MB is the cheapest action, since it does not use the camera. Ithas a reward of−1.
MVL and MVT produce a reward of−5, since they make moderate demands on the
Vision system. MOT gives a reward of−6, because it requires more motion in addition
to the same image processing as MVL and MVT. Finally, MLL is the most expensive,
with a reward of−10, because it must do extensive image processing to search fornew
landmarks and verify that they are robust to changes in viewpoint.

The system receives a reward of 0 when it reaches the target location. The Re-
inforcement Learning objective is to maximize the total reward. In this case, this is
equivalent to minimizing the total cost of the actions takento reach the target.

5.3.3 Experimentation

We have employed the Webots simulator to perform our experiments. The environment
contains a set of landmarks, one of which is designated as thetarget. There is also a wall
that surrounds the region in which the robot is navigating. The landmarks are the only
objects in the environment. There are no obstacles, as obstacle avoidance is handled by
the Pilot system. However, the robot can be blocked by the landmarks or by the wall. In
each trial, the robot starts at a random location in this environment, and it has to reach
the target. The trial terminates under three conditions: (a) if the robot reaches the target
(and is confident that it has reached the target), (b) if the robot takes 500 steps without
reaching the target, or (c) if the robot is blocked. When the trial is finished, the next one
begins with another random initial location for the robot.

In order to see if the performance of the system improves after learning, we com-
pared it with a hand-coded policy. The hand-coded policy used the same discretized
features as the learning algorithm (Target Distance, Landmark Count, Landmark Im-
precision and Target Location Imprecision). The followingtable shows the policy for
choosing an action depending on the values of these features:

Ta
rg

et
Dist

an
ce

La
nd

m
ar

k Cou
nt

La
nd

m
ar

k Im
pr

ec
isi

on

Ta
rg

et
Lo

c.
Im

pr
ec

isi
on

Acti
on

high low ∗ ∗ MLL
high ¬low high ∗ MVL
high ¬low ¬high high MOT
high ¬low ¬high ¬high MB

¬high ∗ high high MVL
¬high ∗ ¬high high MVT

very low ∗ ∗ ¬high MVT
low ∗ ∗ ¬high MB

wherehigh, low andvery low are defined as follows:

70 Chapter 5. Simulation Results

Variable very low low high
Target Distance < 1 ≤ 2 > 2
Target Location Imprecision – < 5 ≥ 5
Landmark Count – < 2 ≥ 2
Landmark Imprecision – < 5 ≥ 5

The reader should note that this hand-coded policy is not thesame as the policy
produced by the hand-coded bidding functions described in Chapter 4. We have chosen
this policy because it allows us to debug and test theLearning Agentseparately from
the rest of the multi-agent system.

TheLearning Agentwas trained for 2000 simulated trials. At regular intervals, the
learned value function was tested by placing the robot in 100randomly-chosen starting
locations, running one trial from each location, and measuring the total reward, the total
number of actions, and whether the robot succeeded in reaching the target position. The
same set of 100 starting locations was employed in each testing period. The hand-coded
policy was also evaluated on these 100 starting locations.

First, let us consider the fraction of successful trials. Figure 5.6 shows that even after
only 100 trials, theLearning Agentis already out-performing the hand-coded policy.
After 2000 trials, theLearning Agentsucceeds in reaching the target in 84 of the trials,
compared to only 24 for the hand-coded policy. From these results we also see that our
hand-coded policy was pretty bad. Although we could have tried to rewrite the policy
to improve its performance, the results show that Reinforcement Learning can greatly
help on solving complex tradeoffs, very difficult to handle manually.

0

10

20

30

40

50

60

70

80

90

0 500 1000 1500 2000

%
 s

uc
ce

ss
fu

l

N training trials

RL

Hand coded

Figure 5.6: Number of successful test trials as a function ofthe amount of training

A second way of analyzing the performance of theLearning Agentis to compute
the average reward per trial, the number of actions per trial, and the number of actions
of each type. Table 5.1 displays this information after 2000training trials. Each value
is averaged over five test runs. The only difference between test runs is the random
number seed for the Webots simulator. We see that while the hand-coded policy receives
an average of−858 units of reward, the learned policy only receives−336 units, which
is a huge improvement. In addition, theLearning Agenton the average only requires

5.3. Reinforcement Learning 71

Table 5.1: Comparison of theLearning Agent(LA) and the hand-coded policy (HC)
after 2000 training trials.

Reward per trial Actions per trial MB MOT MVT MVL MLL
HC -858 153.33 4.94 18.59 0.52 121.96 7.32
LA -336 49.95 11.41 6.52 5.61 4.97 21.43

50 steps to terminate a trial (reach the goal, become blocked, or execute 500 steps)
compared to 153 steps for the hand-coded policy. Actually, theLearning Agentnever
terminates because of reaching the 500-step limit.

Table 5.1 contains other interesting information. In particular, we see that theLearn-
ing Agenthas learned to perform fewer MOT and MVL actions and more MB, MVT,
and MLL actions. Note particularly that theLearning Agentis executing an average
of 11.4 MB (Move Blind) actions per trial, compared to only 4.9 for the hand-coded
policy. One of the goals of applying Reinforcement Learningwas to find a policy that
freed the camera for use by the low-level obstacle avoidanceroutines, and this is exactly
what has happened: the hand-coded policy uses the camera 96%of the time, while the
Learning Agentuses it only 77% of the time. On the other hand, we were surprised
to see that theLearning Agentchooses to execute the most expensive action, MLL,
so often (21.4 times per trial, compared to only 7.3 times pertrial for the hand-coded
policy). Certainly, it has found that a mix of MLL and MB givesbetter reward than
the combination of MVL and MOT that is produced by the hand-coded policy. The
Learning Agentspends much more time looking for new landmarks and much lesstime
verifying the direction and distance to known landmarks.

5.3.4 Future Work

Although the obtained results show that theLearning Agenthas learned to select actions
to resolve the complex camera tradeoff, we need to integrateit into the overall multi-
agent system (as depicted in Figure 5.4), to see if the performance of the whole system
is also improved. Even though theLearning Agentknows which actions it has to bid
for (following the learn policy), it is not clear how its bidding function should be (e.g.
constant, depending on the values ofV (s)).

Some more further work will be focused on the design of the state and feature rep-
resentation and the set of available actions. Asada et al. [5] proposed a solution for
coping with the “state-action deviation problem”, in whichactions operate at a finer
grain than the features can represent, having the effect that most actions appear to leave
the state unchanged, and learning becomes impossible. We plan to evaluate the suitabil-
ity of this approach in our experiments. Regarding the action set design, we found that
the set of available actions was maybe too small and some moreactions may be needed.
We are working on an “action refinement” method [20] that exploits prior knowledge
information about the similarity of actions to speed up the learning process. In this ap-
proach, the set of available actions is larger, but in order to not slow down the learning,
the actions are grouped into subsets of similar actions. Early in the learning process,
the Reinforcement Learning algorithm treats each subset ofsimilar actions as a single
“abstract” action, estimatingP (s′|s, a) not only from the execution of actiona, but also

72 Chapter 5. Simulation Results

from the execution of its similar actions. This action abstraction is later on stopped, and
then each action is treated on its own, thus, refining the values ofP (s′|s, a) learned
with abstraction.

5.4 Evolving the Multiagent Navigation System

As we have already mentioned previously, our Navigation system is decomposed into
a set of different agents that are responsible for differenttasks. Each of these agents
has certain parameters that affect its bidding behavior. Trying to manually find the best
values for the parameters of the bidding functions is an extremely difficult task. In this
section we describe the application of an evolutionary approach to do this optimization.

5.4.1 Navigation Tasks

For a given environment we consider two different navigation tasks. Each one of them
with a different level of complexity. The best parameter setmay change depending on
the complexity of the task. We conjecture that the parameters found depend mainly on
the complexity of the navigation task and not so much on the structure of the overall
environment. This complexity is dependent, though not equal, to the cartographic com-
plexity of the world in which the agent moves, and is based on the following factors:

1. Number of visible landmarks at any time

2. Density of obstacles in the region of navigation

3. Visibility of the target at any time

Using this notion of navigational complexity, the total space of all navigation tasks
can be split into two representative classes: going towardsthe target free of obstacles,
and reaching targets located behind obstacles. In our experiments we use clustersC1

(encircled targets in Figure 5.7) andC2 (encircled targets in Figure 5.8) as representa-
tives of the two task complexity classes. The best parameterset is determined for both
these classes. The aim of the experiments is to endow the Navigation system of the
robot with the capability to switch between these two parameter sets according to the
actual task complexity it is facing.

5.4.2 The Agents

Although a detailed description of the agents was already given in Chapter 4, as well
as the description of the differences between the simulatedsystem and the final system,
(given at the beginning of this chapter), we review the parameters of each of the agents:

• Target Tracker (α, β, κ1, κ2)

– α: controls how rapidly the bids for moving towards the targetdecrease,
bid(move(θ)) = κ1(1 − I

1/α
a); high values ofα make bids increase fast,

while low values make bids increase slowly

5.4. Evolving the Multiagent Navigation System 73

Figure 5.7: Cluster C1

Figure 5.8: Cluster C2

74 Chapter 5. Simulation Results

– β: controls the shape of the imprecision function,Ia =
(

ǫθ

2π

)β
; high values

make it increase slowly, while low values make it increase fast

– κ1: maximum value for moving actions bids

– κ2: maximum value for looking actions bids

• Distance Estimator (κ, φ, δ)

– κ: controls the shape of the distance imprecision function,Id = 1−1/eκǫt;
high values ofκ make the imprecision grow fast, while low values make it
increase slowly

– φ, δ: controls theat target computation; it considers that the robot has
reached the target if the upper bound of theα-cut of levelφ of the fuzzy
number modeling the distance to the target is less thanδ times the body size
of the robot

• Risk Manager (γA, γB, γr)

– γA, γB: control the relative importance of the position of landmarks, ahead
and around, respectively, used in the risk computation,

R = 1 − min

(

1, qA

(

|A|

6

)γA

+ qB

(

|B|

6

)γB
)

– γr: maximum value for looking actions bids

• Rescuer (Ia, R)

– Ia: imprecision threshold, above which this agent gets active

– R: risk threshold, above which this agent gets active

5.4.3 The GA algorithm

Representation

We seek to optimize the Navigation system with respect to its10 parameters:Target
Tracker (α, β, κ1, κ2), Distance Estimator(κ), Risk Manager(γA, γB, γr), andRes-
cuer (Ia, R). The Distance Estimator’s parametersφ and δ are fixed to 0.7 and 2
respectively since they do not affect the efficiency of the system. We use a real valued
chromosome, each chromosome being a vector of 10 dimensions(see Figure 5.9). The
initial population is generated randomly.

5.4. Evolving the Multiagent Navigation System 75

Evaluation

Each individual in the population specifies a particular parameter set for the system, and
is evaluated by running a simulation with the specified parameters in a given environ-
ment. Consider that the agent navigates from an initial position p0 to the target cluster
C containing then target positions (t1, t2, ..., tn) and that it takesdi steps to reach
the targetti from p0 with a success valuesi. A threshold is defined for the number of
steps that are taken to reach the target, above which the agent is said to have failed in
its attempt to navigate to the target (i.e. its success valueis 0, otherwise it is 1).

This formalization gives the clues to define the fitness function that permits the
selection of the best parameter sets. It is clear that the average cost of reaching a target
from the initial positionp0 is defined as the summation of the steps required to reach
each target divided by the number of targets. That is,

c =

∑n
i=1 di

n

Similarly, we can naturally define the average success valueas:

s =

∑n
i=1 si

n

The best behavior for a navigation system is the one that has ahigh success rate with
a low average cost and with a low standard deviation for this average cost,σc. Thus, we
define the fitness function as follows:

f =
s

c + σc

Evolution

We follow an elitist approach. That is, from a population of individuals, the fittest indi-
vidual is passed to the next generation. The remaining individuals form the pool from
which the new generation offspring are created. We randomlyselect two individuals
from the mating pool whose fitness is over a randomly determined value. Then we
apply crossover and mutation on them to generate new individuals:

begin
counter := 0;
repeat

r := generate a random number;
i := find the first individual whose fitness≥ r;
r’ := generate a random number;
i’ := find the first individual whose fitness≥ r’;
apply crossover operator on i and i’;
apply mutation operator on i and i’;
counter := counter+1;

until counter = populationsize / 2
end

76 Chapter 5. Simulation Results

α β κ1 κ2 κ γA γB γr R

RMTT DE RE

Ia

Figure 5.9: Chromosome with the set of parameters

Crossover

A simple two point crossover is used with the two parents exchanging their genetic
material between two randomly generated breakpoints in thegene string. A point to
note is that the chromosomes are broken only at agent boundaries (see Figure 5.9). The
idea is that one of the parents may have good genes for a particular agent while the other
parent may have good genes for another agent. This way the crossover could result in
an offspring having a higher fitness value than both its parents.

Mutation

The mutation operator for the genetic algorithm has been adopted from the Breeder
Genetic Algorithm [53]. Given any set of parameters as a chromosome, we can view
it as a pointx within a 10 dimensional space. Using our mutation operator,we seek
to search for optimality within a “small” hypercube centered at x. How small this
hypercube is, depends on the ranges in each parametric dimension within which we
allow the chromosome to mutate. The parametric dimensions are not homogeneous,
hence mutation ranges differ for each dimension, being directly proportional to the
variance allowed in that parameter. Another feature of thismutation operator is that
while it searches within the hypercube centered atx, it tests more often in the very close
neighborhood ofx, the idea being that, while we want to conduct a global searchfor
optimum using our recombination, mutation is used for a morerestricted local search.
Having understood the broad features which the mutation operator should demonstrate,
we formally define the mutation as follows:

Given a chromosomex, each parameterxi is mutated with probability 0.1. The
number of parameters being 10 implies that at least one parameter will be probably mu-
tated. Further, given the mutation range for the parameterxi asrangei , the parameter
xi is mutated to the valuexi

∗ given by

xi
∗ = xi ± rangei · ρ

As previously discussed,ρ should be such that it lies between 0 and 1 (to generate the
hypercube centered atx) and also it should probabilistically take on small values so as
to test more often in the close neighborhood ofx . This is realized by computingρ from
the distribution

ρ =
∑

j

αj2
−j

where eachαj is probabilistically either 0 or 1.

5.4. Evolving the Multiagent Navigation System 77

α β κ1 κ2 κ γA γB γR Ia R

C1 1.731 2.03 0.314 0.493 0.355 0.240 0.521 0.054 0.386 0.215
C2 1.231 2.12 1.0 0.564 0.178 1.377 4.39 0.707 0.871 0.906

Table 5.2: Optimal parameter values for each of the clustersfor one execution of the
GA over 100 generations

Diversity

The convergence of the genetic algorithm is estimated through its population diversity.
Initially, the population has a high diversity since all theindividuals are randomly se-
lected. As the algorithm converges, the individuals in the population converge towards
the best solution, thus decreasing the diversity. In our case, the individuals are points
in a heterogeneous dimension space, withα, β, γA andγB ∈ ℜ+ while the other pa-
rameters ranging between 0 and 1. Hence we use the Mahalanobis distance measure to
determine the diversity of a population [22].

The Mahalanobis distance takes into account the heterogeneity in dimensions and
correspondingly scales each dimension while estimating the distance between two
points. Given a set of data points{zi} with each data pointzi being an n-tuple
〈zij |1 ≤ j ≤ n〉, the Mahalanobis distancedm between two pointszk andzl is given
as

dm(zk, zl) = (zk − zl)
T Σ−1(zk − zl)

HereΣ is then×n variance-covariance matrix for the given data points. To compare the
diversity of populations across generations, the covariance matrix is computed taking
into account all the chromosomes over all generations. The diversity of a population
is then calculated as the average Mahalanobis distance of each chromosome from the
mean chromosome.

5.4.4 Results

The genetic algorithm was run on the two task complexity classes represented by the
target clustersC1 andC2 in our simulator. The population size was of 20 individuals,
and we ran the genetic algorithm for 100 generations. The initial position was the same
for both tasks, with the crossover and the mutation rates being 0.8 and 0.1 respectively.
In the algorithm, four of the parameters —α, β, γA andγB lie on the positive real
axis and hence we have to choose an upper limit on the real line. This upper limit
is important since a low upper limit value implies that we implicitly restrict our real
valued parameters to that limit, while a high upper limit value may increase the number
of generations for which the genetic algorithm may have to berun since the initial
random generation will be very disperse.α andβ are exponents of numbers less than 1
and hence their large values will not be useful. Keeping these factors in consideration,
the upper limit value has been fixed to 5 in our simulations.

The genetic algorithm converges to an optimal solution for each cluster as can be
seen in Figures 5.10-5.15. By optimal solution we refer to the best solution the algo-
rithm has found, which may not necessarily be the optimal solution to the navigation

78 Chapter 5. Simulation Results

Figure 5.10: Fitness of the fittest individual along generations (clusterC1)

Figure 5.11: Average fitness of the population along generations (clusterC1)

Figure 5.12: Mahalanobis diversity (clusterC1)

5.4. Evolving the Multiagent Navigation System 79

Figure 5.13: Fitness of the fittest individual along generations (clusterC2)

Figure 5.14: Average fitness of the population along generations (clusterC2)

Figure 5.15: Mahalanobis diversity (clusterC2)

80 Chapter 5. Simulation Results

Going toC1 Going toC2

s c f s c f
C1 set 1 50.5 0.017 0.5 127.5 0.003
C2 set 0.5 42.5 0.011 1 122 0.007
HT set 0.5 69 0.005 0 – 0

Table 5.3: Results obtained by the different parameter sets

task. The optimal values for some of the parameters differ significantly for the two
clusters as shown in Table 5.2. The parameters associated tothe bidding function of the
Risk Manageragent differ the most between the two clusters. This is so because the
Risk Manageris very sensitive to the complexity of the task. The more obstacles, the
higher the risk of losing sight of landmarks.

In order to check the results obtained for each of the clusters, we have tested the
two parameter sets found by the genetic algorithm on the two different navigation tasks
(going to clusterC1 and going to clusterC2). We have also tested our original param-
eter set, which we set by hand, on the same two navigation tasks. The results obtained
by each set on each of the tasks are shown in Table 5.3. For eachtask, the mean average
success value (s), average cost (c) and the fitness value (f) is computed. As expected,
the parameter set found for clusterC1 performs perfectly when going to clusterC1 and
it only reaches the targets of clusterC2 50% of the time. On the other hand, the param-
eter set found for clusterC2 reaches the targets of clusterC2 all the times, while it only
reaches the targets of clusterC1 50% of the time. Finally, the hand-tuned parameter
set reaches 50% of the time for targets in clusterC1, and never reaches the targets of
clusterC2. Therefore, the evolutionary approach has improved the global navigation
behavior.

In Figures 5.16 and 5.17 we can see some paths followed by the robot using each
of the parameter set on each of the tasks. Successful paths are only shown for those
parameter set with a success value of 1. Otherwise, an example of a failing path (marked
with a cross at its end) is shown.

5.4.5 Future Work

We will analyze the generality, in terms of different environments and starting points,
of the parameters obtained by the genetic algorithm. Further work should also focus on
designing an agent capable of identifying the complexity ofthe task being performed,
so that the parameters can be switched from one set to another. We will explore the use
of Case Base Reasoning techniques on this “situation identifier” agent.

5.4. Evolving the Multiagent Navigation System 81

Figure 5.16: Going to clusterC1

Figure 5.17: Going to clusterC2

Chapter 6

Real Experiments

In this chapter we describe the experiments carried out withthe real robot on real en-
vironments. We firstly describe the real robotic platform wehave used for this experi-
mentation, and the vision system we have developed in order to recognize the bar-coded
landmarks used in the experimentation environment. A briefdescription of a graphical
control interface is also given. Finally, we describe in detail the different scenarios on
which the experiments have been carried out and the results we have obtained.

6.1 The Robot

The robot used in the experimentation is an ActivMedia1 Pioneer 2 AT. It is a 4-wheel
drive all-terrain robot, equipped with a pan and tilt unit with two B&W cameras. It
is also equipped with front and rear bumpers for collision detection. The dimensions
of the robot are 50×50×26 (in cm, length×width×height). The field of view of the
cameras is of 45 degrees, and the pan/tilt unit can pan from +150 (left) to -150 (right)
degrees and tilt from -90 (down) to +90 (up) degrees. The robot is calledMarkFinder,
since its navigational skills are based on finding landmarksin the environment. Some
pictures of the robot are shown in Figure 6.1.

Although the final objective of the project we are involved inis to have a completely
autonomous robot, we are currently working with off-board control and vision process-
ing, as it is easier for programming and debugging our algorithms. We use a wireless
Ethernet to communicate with the robot (to send commands to the wheels’ and pan/tilt
unit’s motors, and to receive information about odometry and bumper activation), and
the images are sent through a video transmitter (see Figure 6.2). To make the robot fully
autonomous, we would only need to put the control and vision processing algorithms
into its on-board computer, although it should still need tosend some information back
to an off-board computer for manually selecting the target.

The experimentation has been carried out in an indoor unstructured (not office-like)
environment, with easily recognizable and controlled landmarks and obstacles. The
environment is an area of about 50m2, containing ten landmarks plus the target and a

1ActivMedia Robotics, http://www.activmedia.com

83

84 Chapter 6. Real Experiments

Figure 6.1: Left: MarkFinder robot. Right: Detail of the pan and tilt unit with two
B&W cameras

few non visible obstacles. A difficulty in real environmentsis the vision system, as it is
highly sensitive to changes in the illumination, which makes it very hard to detect ob-
jects. Therefore, we have developed a simple and robust vision system that recognizes
barcoded landmarks. Moreover, the simplicity of the landmarks permits us to easily
configure scenarios with different complexity levels by changing their location, as well
as the location of the obstacles. The vision system and the landmarks are described in
the following section.

6.2 Vision

Since we do not focus our research on the Vision system of the robot, we did not intend
to develop a Vision system capable of recognizing complex objects, but just a very
simple type of landmark. The simplest type we thought of was barcodes.

Landmark labels have a common part of five vertical black bars, to indicate that
it is a landmark, and at the right side of the bars, a vertical binary codification with
black and white squares. The binary code is composed of five squares (black meaning
1, white meaning 0), so we have 32 different codes. However, codes 0 and 31 are not
used, as they give many problems when trying to identify them, so we have a total of
30 different codes, which is enough for our environment. We have used boxes with
the same landmark label on their four sides so the Vision system is able to detect the
landmarks from any perspective. The labels are printed on DIN A4 papers, and the
dimensions of the boxes are 30×30×40 (length×width×height), having the labels at
the top of each side. Examples of such landmarks are shown in Figure 6.3.

The algorithm for recognizing these landmarks is based on the fact that the pattern
of a series of alternated black and white bars of equal width is very unusual. First of
all, the image is binarized, since it is in gray scale, and thealgorithm needs to have
pure black and white images. Acloseoperation is also applied. This operation is useful
for removing noise from the image. Once the binarization andthe close operations are
done, the algorithm starts scanning the image line by line, looking for the pattern of
black and white bars. When it finds such a pattern, it scans vertically the binary code to
identify which landmark has been detected. Depending on thelighting, a landmark can

6.2. Vision 85

Figure 6.2: Communication with the robot

be detected using a binarization threshold, but not detected for other thresholds. Thus,
this scanning process is done several times with different thresholds. Once the whole
image has been processed with all the thresholds values, theinformation of all detected
landmarks is sent to the Navigation system. A flowchart of theprocess is shown in
Figure 6.4.

Although the robot is equipped with two cameras, we are now processing only the
images of one of them, as we have not yet finished the implementation of the stereo
vision algorithm. This algorithm would use the images from both cameras to compute
the distance to the detected landmarks. However, we simulate that we already have this
stereo vision algorithm. To do so, we have designed the landmarks so that all of them
have the same size. This way, knowing the height of the bars (in pixels of the image)
of a landmark, the distance from the robot to that landmark can be computed. The
heading is taken as the angle to the central point of the label. However, even with the
robot stopped, and due to illumination conditions, the image processing algorithm does
not always detect the landmarks in the same place (it can varysome pixels). Thus, the
computed distances and angles have some imprecision.

Since the quality of the cameras is not very good, the Vision system has some prob-
lems with recognizing landmarks that are far from the robot.To have a robust recog-
nition system, we have set that it only informs about the landmarks that are within a
distance of 3 meters around the robot. However, even if a landmark is in this “visible
area”, the Vision system sometimes misidentifies it. To solve this problem, we require
that a landmark has to be recognized in several subsequent frames with the same code
before informing about its detection.

But even this last requirement is not always enough to give correct landmark iden-
tification. To add more robustness to the Vision system, the detected landmarks are

86 Chapter 6. Real Experiments

Figure 6.3:Left: Landmark label 21 (code = 10101 = 21).Right: One of the boxes with
multiple landmark labels

checked against the Visual Memory (see Chapter 4 for a detailed description of the Vi-
sual Memory). For each landmark in the list of detected landmarks, two checks are
done. First, we check that the detected landmark is not in a location close to another
landmark stored in the Visual Memory (i.e. the distance between the two locations –
one given by the Vision system and the other one stored in the Visual Memory – is
below a threshold). If this is the case, and the code of the landmark differs from the one
given by the Vision system, we replace the code of the detected landmark by the one
stored in the Visual Memory on that location. If the code is the same, then the location
given by the Vision system is assumed to be correct, and it replaces the location stored
in the Visual Memory. Secondly, we check that the detected landmark is not stored in
the Visual Memory at a very different location than that given by the Vision system. If
this is the case, and the location stored in the Visual Memorylies in the view field of the
camera, this location is given as the location of the detected landmark. If the location
does not lie in the view field, the landmark is ignored. Finally, if the detected landmark
is neither stored in the Visual Memory nor located close to another landmark, it means
that it is a new landmark, and it is added to the Visual Memory.Table 6.1 summarizes
the actions taken in each situation. We indicate the information about the landmark
(code and location) that is finally sent to the Navigation system, and how the informa-
tion of the Visual Memory is modified. The subscript VS standsfor the information
given by the Vision system, while the subscript VM refers to the information stored in
the Visual Memory.

Although this check adds robustness to the Vision system, itmay have undesired
effects in some situations, since it gives more importance to the information stored
in the Visual Memory than to that coming from the Vision system. For instance, if the
location of a correctly detected landmark differs too much from its location stored in the
Visual Memory, not because of an error of the Vision system, but due to the imprecision
of the stored location, it will not be updated, although it should be. Another problematic
situation would arise if the robot were moved to another location, without it noticing
it (what is known as the “kidnapping problem”). From the new location, the Vision
system would detect some landmarks, but their locations would not match at all with

6.2. Vision 87

Binarize with
current threshold

Apply close

Scan current line
for 5 bar pattern

Pattern found?

Yes

Find binary code

Binary code
found?

Decode id

Yes

Compute distance
and heading

At end of
image?

Yes

No

Go to next line

All thresholds
done?

No

No

Return detected
landmarks list

Yes

No

Add to detected
landmarks list

Image

Change threshold

landmarks
list

Figure 6.4: Landmark recognition process

88 Chapter 6. Real Experiments

Table 6.1: Check against Visual Memory
Close location Different location

Same ID

–Right recognition–
return(idV S, locV S)
Update location in VM

–Wrong recognition–
if locV M in viewfield then
return(idV S , locV M)
else ignore landmark

Different ID
–Wrong recognition–
return(idV M , locV S)
Update location in VM

–Right identification–
return(idV S, locV S)
Add to VM

the locations stored in the Visual Memory, and, therefore, they would not be updated
either. The first problem can be solved by changing the imprecision threshold above
which the landmarks are removed from the Visual Memory, so that it only keeps those
landmarks whose location is very precisely known. However,there is no way to solve
the “kidnapping problem”. The only way to handle it would be to have a better Vision
system, so that it would not need to check the locations with the Visual Memory. Since
we still do not have such a Vision system, and in our experiments the robot is never
“kidnapped”, we rely on the Visual Memory.

With all these provisions, landmarks are always correctly identified, therefore there
is no uncertainty about the presence of landmarks, althoughthere is imprecision about
their exact location.

The fact of the Vision system being only capable of recognizing landmarks not
further than 3 meters from the robot, together with the assumption of the initial visibility
of the target, restricts the possible environments on whichwe can experiment. In order
to be able to test the Navigation system on more interesting (larger) environments, we
have a special landmark label that is considered as the target and can be seen from 7-8
meters. This landmark label is of the same type as the rest, but has a larger size (DIN
A1), and when computing the distance from the robot to it, this is taken into account.
In Figure 6.5 this larger target landmark is shown (there arefour “standard” landmarks,
plus the larger target, placed higher than the others).

Figure 6.5: Larger target landmark label

6.3. Graphical Interface 89

6.3 Graphical Interface

In order to carry out the experimentation, we have developeda graphical interface so
that a human operator can give orders to the robot. The interface, shown in Figure 6.6,
permits the operator to manually control the robot motion (translational and rotational
speeds) and the pan and tilt unit movements. The interface has a three-dimensional
representation of the environment, showing the robot and the detected landmarks and
obstacles (including those stored in the Visual Memory). Italso shows the images
gathered from the cameras and a list of detected landmarks.

The operator can select the type of landmarks to be recognized. In our case, we
were only able to use the bar-coded landmarks described in the previous section. Once
the landmarks’ type has been selected, the Vision system starts processing the images
coming from the cameras, and the detected landmarks are displayed in the interface.
The operator can then select one of the detected landmarks and set it as the target land-
mark to be reached. Once the target is selected, the operatorcan instruct the robot to
go to the target. From this point on, the robot will autonomously navigate towards the
target until either it reaches the target or it is instructedto stop navigating.

The interface also gives information about the Navigation system, such as the cur-
rent target or how many object, beta and topological units theMap Managerhas stored,
and a graphical representation of the topological map. Whenthe target is reached, the
relevant information about the trial is given: trial duration, total length of the path, dis-
tribution of winning bids among the agents and number of diverting targets computed.
This information can also be stored for later statistical analysis.

Although the interface has been used only with our robot, we have developed it so
that it can be used with any robotic system, so there is no needto have a specific control
interface for each different robot we may have in the lab. Theidea is to let the operator
configure a specific system by choosing a robot platform (be itwheeled, legged, or any
other kind of autonomous robot), the type of landmarks to be used (which may imply
having more than one Vision system running in parallel), andthe Pilot and Navigation
systems that will control the robot . Once the robotic systemhas been configured, it can
be controlled as described above.

6.4 Goals of the Experimentation

The first goal of the real experimentation is to check whetherthe good results obtained
through simulation are also obtained with the real robot. Ideally this would be the case,
so the only modifications needed would be to make the existingNavigation system use
the real robot instead of a simulated one. However, moving from simulation to the
real world is not that easy, as many problems arise when working with physical robots
which were not present on the simulated world (unless the simulator used has very high
realism). These problems are mainly related to the motion and vision systems of the
real robot.

Regarding the motion system, we have to take into account that the robot needs
some time in order to execute motion commands. On simulation, we could run the
system as fast as we liked, since the commands were executed immediately, however,

90 Chapter 6. Real Experiments

Figure 6.6: Graphical control interface

6.5. The Real Scenarios 91

we cannot do so with the real robot. The frequency of sending these motion commands
to the robot should be set according to the response time of the robot, so a command is
only sent when the robot is really prepared to execute it.

Another problem of using a real robot is the vision system. Although the vision
system and the landmarks we have designed are very simple, the system is not able
to identify the landmarks all the time, due to changes in illumination, interference on
video transmission, blurring caused by motion of the camera, etc. Therefore, as already
mentioned, the vision system needs to process some frames before it is able to inform
about the detected landmarks. Thus, the actions for moving the camera and identifying
landmarks must also be sent with the proper frequency so thatthe vision system has
time to process enough frames.

To overcome these problems, we have tuned the agents so that the robot is able to
execute all the commands generated by the system.

Through the real experiments we also check whether the Navigation system we have
designed is able to perform well in different types of environments, and if the design of
each individual agent is the most appropriate for obtaininggood overall performance of
the Navigation system. To check this, we have experimented with different scenarios,
starting with simpler ones and increasing their complexitystep by step. The two main
variables that describe the complexity of a scenario are:

• Density of landmarks: the fewer landmarks in the scenario, the more risky it is,
since the map contains very little information about the relative location of the
target and other landmarks. On the other hand, if the densityof landmarks is
high, there will very probably be always some landmarks visible, and the Navi-
gation system will be able to compute the location of the target from the visible
landmarks.

• Density of obstacles: if the density of obstacles is low, the path from the starting
point to the target may not be blocked, or only blocked by easily avoidable obsta-
cles, so the robot may not need to compute diverting targets to reach the original
one. Contrarily, in a scenario with many obstacles, the robot is forced to change
direction very often, which may cause it to lose sight of the target, and therefore,
to increase the imprecision about its location. Moreover, if the obstacles block
the way to the target, the Navigation system may need to compute a diverting
target to reach the original one.

6.5 The Real Scenarios

The different classes of scenarios on which the experimentation has been carried out
are the following:

1. Single landmark: in this class of scenario there is only one landmark, which is
the target, and no obstacles. This class of scenarios is usedto check that the robot
is able to reach a target when there are no references to it andthere exists a clear
path to the target.

92 Chapter 6. Real Experiments

2. Single landmark and obstacles: these scenarios are composed of a single land-
mark which is the target, and several small obstacles that donot occlude the
target, but force the robot to avoid them in order to get to thetarget.

3. Several landmarks: in these scenarios there are several landmarks, one of them
being the target, but no obstacles (apart from the landmarksthemselves, which
are obviously seen as obstacles). In these scenarios the Navigation system is able
to build a map of the environment, and we will check how good itis.

4. Several landmarks and obstacles: in these scenarios we add obstacles between
the landmarks of the previous scenarios so that they block the robot and it is
forced to compute diverting targets to reach the original one. In these scenarios
the Navigation system is also able to build a map of the environment, including
the detected blocking obstacles.

Some pictures of the different scenarios can be seen in Figure 6.7.
The first two classes of scenarios are very simple, and the experiments on such

scenarios just check the very basic behavior of reaching a target through a quite clear
path. In these scenarios the target is visible all the time, as the only obstacles are small
ones, therefore not occluding the view field of the camera. The real tests are in classes
3 and 4, as the target may be occluded by other landmarks, and the path to the target
might be blocked by landmarks and obstacles. Thus, in these scenarios, the robot must
make use of its navigational skills.

We impose the restriction of the objects on the environment (that is, landmarks and
obstacles) be static, so their location cannot change during a trial. If that were allowed,
the computed relation among landmarks would be inconsistent, and thus theβ-vector
computation would not be valid at all.

6.6 Experimentation Results

We describe the experimentation carried out in each one of the four scenarios described
above. We have used the parameters obtained through the Genetic Algorithm approach
described in Chapter 5 (discarding those that are not used inthe final version of the
Navigation system). For each scenario, there is a brief discussion of the results. In
each of these scenarios we have defined different starting points (two starting points
in scenarios 1 and 2, and three in scenarios 3 and 4). We have run 40 trials for each
starting point and stored the following statistics:

• Success/failure rate

• Number of diverting targets

• Distribution of winning bids among the agents

The relevant statistics of the experiments are shown in Table 6.2.

6.6. Experimentation Results 93

Figure 6.7:Top left: one of the obstacles used in the environments.Top right: scenario
1. Middle left: scenario 2.Middle right: scenario 3.Bottom left and right:scenario 4.

94 Chapter 6. Real Experiments

Table 6.2: Results of experimentation (TT:Target Tracker; RM: Risk Manager; RE:
Rescuer; PS:Pilot system)

Scenario Success #d.t. Winning moving bids Winning looking bids
class rate TT RE PS TT RM RE PS

1 100% 0 100% 0% 0% 0% 54% 0% 46%
2 100% 0 79% 0% 21% 0% 66% 0% 34%
3 85% 0 78% 0% 22% 0% 56% 0% 44%

4 84%
0: 24%
1: 58%
2: 18%

67% 2% 31% 3% 41% 0% 56%

Scenario 1. Single landmark

Description: Scenario with just one landmark and no obstacles.
Task: Reach the landmark.
Results: In this scenario the robot behavior was, as expected, to go directly to the

target in a straight line. TheTarget Trackerwon 100% of the moving actions it bid
for, since its bids were high because the imprecision about the location of the target
was very low. TheRescuerdid not bid because it never reached its activation levels: the
imprecision was never high enough, and there were no blocking situations. Similarly, as
there were no obstacles, thePilot did not have to bid for changing the robot’s trajectory.
Regarding the looking actions, theRisk Managerand thePilot won a similar number of
bids. Since there was only one landmark, the risk was very high, and theRisk Manager
always bid to look ahead. The target was precisely located all the time, so the looking
bids of theTarget Trackerwere very low, and never won.

Scenario 2. Single landmark and small obstacles

Description: Scenario with just one landmark and some small obstacles between
the robot and the landmark. The small obstacles are not visible and can only be detected
by bumping into them.

Task: Reach the landmark, avoiding the obstacles detected by the bumpers.
Results: The robot did always reach the target. The winning bids for looking

actions were distributed, again, among theRisk Managerand thePilot. The Target
Trackerdid not win any of the bids because the imprecision of the target’s location was
not high enough. As in the previous scenario, theRescuerdid not have to intervene at
any point. Regarding the moving actions, only thePilot andTarget Trackerwon bids:
thePilot when an obstacle was detected and avoided, and theTarget Trackerwhen the
path to the target was free.

Scenario 3. Several landmarks

Description: Scenario with many landmarks and with no obstacles apart from the
landmarks themselves. In order to have an interesting scenario, we placed the target
landmark label higher, so that it was visible from the starting point, even if there were
other landmarks in the view line from the robot to the target.If we had not done so,

6.6. Experimentation Results 95

Figure 6.8: Maps of 2 different scenarios of scenario class 3

the path from the starting point to the target would always have been clear, since the
target has to be initially visible, which actually corresponds to the first scenario. This
change required the robot to move the camera up and down to be able to have the target
landmark in its view field (in the previous scenarios, it was only doing a pan movement,
with no tilt at all). Thus, we had to change the looking actions in order to incorporate the
tilt angle. The agents bidding for looking actions added thetilt angle in the following
way: theTarget Trackerselects a random tilt angle, ranging from 0 degrees (so that
the target landmark can be in the view field when it is 7-8 meters away) to 35 degrees
(so that the target can be in the view field when it is less than 1meter away); theRisk
Managerdoes a similar thing, but it only selects a random tilt angle on one third of the
actions it bids for, while it sets a null tilt angle on the other two thirds, since most of the
landmarks (actually, all but the target) are at the same height of the cameras (i.e. in the
null tilt angle plane); finally, theRescuer, when bidding because the imprecision is too
high, does two visual scans around the robot, one with a null tilt angle, and another one
with a random positive tilt angle.

Task: Reach the target landmark, eventually avoiding others along the way and
build a map of the environment.

Results: The behavior of the robot in this scenario was similar to the one exhibited
in the previous one. However, it reached the target in 85% of the trials; in 15% of the
trials it failed because the error on the location of the target made it suppose it was at
the target location when it was really not there yet. This wascaused by the target being
occluded by other landmarks, and the constant change in trajectory needed to avoid
these landmarks. These two factors caused the location of the target stored in the Visual
Memory to increase its imprecision. However, the imprecision was not high enough for
theRescuerto become active. A difference with the previous scenario isthat theRisk
Managerbid for looking both ahead and around, since there were many landmarks, and
at some point, it had enough landmarks ahead, but not around,so it bid to look around.
Some examples of maps built in scenarios of this class duringthe trials are shown in
Figure 6.8. In these maps, numbers represent landmarks the robot has seen, and the
triangular regions correspond totopological unitsof the Map Manager’s topological
map (see Chapter 3 for details on how this map is built).

96 Chapter 6. Real Experiments

Scenario 4. Several landmarks and obstacles

Description: In this scenario there are also a few non visible long obstacles between
some landmarks that completely block the shortest path fromthe starting point to the
target landmark.

Task: Reach the target landmark avoiding obstacles and building amap of the
environment, and using it to compute diverting targets.

Results: the robot did successfully encode the obstacles on the topological map and
used it to compute diverting targets. In 58% of the trials only one diverting target was
computed in order to avoid a long obstacle blocking the path;the rest of the obstacles
were avoided by the Pilot system, with no need to compute morediverting targets. In
18% of the trials, however, it was necessary to compute another diverting target, since
the Pilot found the path blocked again by a long obstacle. On the other hand, in 24%
of the trials, the Pilot was able to avoid the long obstacles,but did not realize that
they were such long obstacles. This situation happened whenthe crash points with the
long obstacle were not close enough to each other or to the landmarks, so they were
considered as independent obstacles. Thus, when the Pilot tried to avoid these “point
obstacles”, it was actually avoiding the long obstacle, without realizing it. In such
situations, the robot reached the target without having to compute any diverting target.
Bids for moving actions were distributed very similarly as in the two previous scenarios.
The only difference is that theRescueralso won some bids (actually, it only wins one
bid for stopping the robot each time it asks for a diverting target). Regarding bids for
looking actions, now theTarget Trackeralso won a few bids to look towards the target
to decrease its location’s imprecision. Be it for these actions or because the scenario
was not complex enough, the imprecision was never high enough so that theRescuer
had to bid for looking actions. Again, some of the trials failed because of the error on
the target’s location. In Section 6.7 we describe in detail one trial in this scenario.

6.7 A Trial Example

In this section we describe in detail one of the trials run in ascenario of class 4. The
environment and the path followed by the robot are shown in Figure 6.9. The target
landmark in this trial is landmark number 10. In Figures 6.10and 6.11 the incremental
building of the map is depicted. They show both a 2D representation and the topological
map actually stored by theMap Manager. In the topological maps, although not shown,
the arcs have a fixed cost of 1, unless otherwise specified. Figures 6.12 and 6.13 show
the evolution of the bids of each agent and the Pilot for moving and looking actions,
respectively. In these graphics, the filled areas indicate the agent that made the highest
bid at that point in time. The corresponding points in Figure6.9 are also shown. Next,
we comment on the relevant points of the path:

• A: Starting point of the trial. Initially, landmarks 10, 29 and 19 are visible. With
these three landmarks, no map is created, since at least fourlandmarks are needed
in order to start building the map. Landmark 10 is selected asthe target by the
user and theRescueris informed about it. Then, theRescuerbids for doing an
initial sweep, as described in Section 4.4.4. During this sweep, landmarks 4, 21

6.7. A Trial Example 97

Figure 6.9: Path followed during the trial. See explanationof relevant points on the text

and 17 are also identified. With these new landmarks, theMap Manageris able
to start building the map. The step by step update of the map isshown in Figure
6.10. The corresponding updates after seeing each of these three landmarks are
maps (1) to (3). When the sweep is finished, theRescuerinforms theTarget
Tracker about the target being landmark 10, which immediately starts bidding
for going towards it, and the robot starts moving. Actually,the point A in the
graphics of the bids corresponds to this moment, when theTarget Trackerstarts
bidding. As can be seen in the graphic of moving action bids, the Pilot won most
of the bids. This was so because landmark 4 was close to the robot, and the Pilot
wanted to avoid it. The trajectory, however, was minimally modified. Before
reaching point B, landmark 13 is identified, and the map is updated accordingly,
resulting in map (4) in Figure 6.10.

• B: The robot bumps into the obstacle between landmarks 29 and 4and imme-
diately backs up. However, it is not yet considered as being along blocking
obstacle, since there is still enough space between the crash point and landmark
29, through which the robot could pass. This back up is a built-in action of the
Pilot, and it does not bid for executing it. That is why in the graphic theTarget
Trackerwins the bids. However, while the back up action is being executed, these
bids are not taken into account.

98 Chapter 6. Real Experiments

Figure 6.10: Map created during the trial

6.7. A Trial Example 99

Figure 6.11: Map created during the trial (cont.)

100 Chapter 6. Real Experiments

Figure 6.12: Moving bids.Target Trackerin red, and Pilot in green

6.7. A Trial Example 101

Figure 6.13: Looking bids.Target Trackerin red, Pilot in green andRisk Managerin
blue

102 Chapter 6. Real Experiments

• C: After backing up, theTarget Trackerbids again for moving towards the target,
but these bids are surpassed by the Pilot’s bids to avoid the just detected obstacle
(as can be seen in the moving bids graphic), and the trajectory is slightly modified.

• D: The robot bumps again into the obstacle and backs up. After this second crash,
the obstacle is considered to be blocking the path. The Pilotinforms the Navi-
gation system about the blocking situation. This information is internally sent to
theMap Manager, which updates the map (the corresponding arc is assigned an
infinite cost, see map (4b) in Figure 6.11), and to theRescuer, which asks the
Map Managerfor a diverting target. Again, although in the graphics theTarget
Trackeris winning the bidding, the back up action is really being executed.

• E: TheMap Managercomputes the diverting target as being: “to cross the edge
between landmarks 17 and 29” and informs theRescuer, which will inform the
Target Trackerabout the new target. This agent starts bidding to move the robot
so that it crosses the given edge.

• F: At this point, theTarget Trackerconsiders that the edge 17/29 has been crossed
and informs about it. This causes theRescuerto set the target to be the original
one (landmark 10). TheTarget Tracker’s bids are again to move towards this
landmark. Before reaching point G, landmarks 1 and 20 are detected and the map
is updated (maps (5) and (6)). Landmark 20 is not visible in Figure 6.9; it is
behind landmark 1.

• G: The proximity of landmark 13 makes the Pilot bid high to avoid it, surpassing
theTarget Tracker’s bids, and the robot’s trajectory is modified. While avoiding
this landmark, landmark 7 is detected, and the map is updated, resulting in the
final map (7).

• H: At this point the Pilot considers that landmark 13 has been avoided and stops
bidding. TheTarget Trackerwins again, and it makes the robot go towards the
target.

• I : The target is finally reached.

Analyzing the graphic of looking action bids, we can see thatthe winning bid is
periodically changing between the Pilot and theRisk Manager. The bids of theTarget
Trackerare very low, since the target is precisely located during the whole trial. Around
point H, the bids of theRisk Manageralso decay. This is so because at that point, there
are more than six landmarks behind the robot, which makes therisk 0. The winning
bids of theTarget Tracker, at point I, are due to the fact that this agent bids very high
to look towards the target when this has been reached. The execution of this action has
no intention of decreasing the imprecision of the target’s location, but it is just a way to
show that it “knows” that the target has been reached.

6.8. Discussion and Future Work 103

Table 6.3: Sources of computation of the target’s location

Vision System 12.7%
Visual Memory 76.1%
Map Manager 11.2%

6.8 Discussion and Future Work

The results obtained confirmed that, as already seen throughsimulation, the bidding
coordination mechanism and the mapping and navigation methods work appropriately.
The bidding mechanism achieves the desired effect of combining the simple behaviors
of the agents into an overall behavior that executes the mostappropriate action at each
moment, and leads the robot to the target destination. As forthe mapping and navigation
method, we have seen that it is able to build a map of the environment and is used for
two different purposes: on one hand, to compute diverting targets when the robot finds
the path to the target blocked, and on the other hand, to compute the location of the
target when this is not visible. Regarding this latter use ofthe map, Table 6.3 shows
the statistics of how the target’s location is computed. Thesources of this computation
can be the following: (1) the real Vision system, that is, thetarget is recognized and
its location computed from the images, (2) the Visual Memory(described in Chapter
4), and, (3) theMap Manager, that is, the location of the target is computed using the
beta-coefficient system and the locations of other landmarks. As can be seen from the
statistics, most of the time (76.1%) the location is computed using the Visual Memory,
however, sometimes (11.2%) the Navigation system must makeuse of its “orientation
sense” in order to figure out where the target is. Figure 6.14 shows the evolution of
the imprecision on the target’s location and the different sources (the colored band at
the bottom of the graphic). Although, usually, the robot realizes that it has reached the
target by obtaining its location from the Visual Memory, it sometimes realizes it using
the orientation sense. However, since the computation of the target location using the
orientation sense is more imprecise than the Visual Memory (because it accumulates
the imprecision of several landmarks’ locations), the robot sometimes informs about
having reached the target when it has not really done it, thusfailing in its mission.

The scenarios used in the real experiments were not very complex. Therefore, some
more experimentation on more complex scenarios should be performed. These new
scenarios should include more blocking obstacles, possibly having some cul-de-sacs,
so that the robot would need to undo the path already done.

Although the good results obtained indicate that the agentsare well designed, we
could still improve them and, hopefully, improve the performance of the overall robotic
system. Actually, during the experimentation with the realrobot, we already did some
refinement. However, this refinement can be a never-ending task, and for this reason we
decided to stop it and do the real experiments with the version of the agents described
in Chapter 4. The possible further refinement of some of the agents could go in the
following directions:

• Target Tracker: this agent could do a more intelligent tilt angle selection, such

104 Chapter 6. Real Experiments

Figure 6.14: Evolution of the target’s location imprecision and sources of computation

as being a function of the distance to the target, thus, increasing the chances of
having it in the view field of the camera.

• Risk Manager: this agent could also bid, not only for looking ahead or around,
but also to other areas with fewer landmarks, or even selecting a random direction
to look to. Right now, if there are very few landmarks ahead, this agent sticks to
bidding for looking ahead, and never bids for looking around, thus, ignoring a
large part of the environment. An alternative to modifying the Risk Manager
would be to add a new agent with this behavior.

Some improvements could also be done on the Pilot and Vision systems. Regarding
the Pilot, we could use a better obstacle avoidance algorithm. With the current algo-
rithm, only the closest obstacle is considered for computing the avoidance path. We
could improve the robot’s performance if the Pilot took intoaccount all the obstacles
and landmarks stored in the Visual Memory, thus, producing better avoidance paths.
We are also planning to equip the robot with a laser scanner. This laser would be con-
tinuously scanning a 180 degree area in front of the robot to accurately detect obstacles
that are several meters away. With this new sensor, the Pilotcould avoid the obstacles
before bumping into them, thus, generating better paths. Regarding the Vision system,
we plan several improvements. The first one is to finish the stereo algorithm, so we can
use the two available cameras for computing the distance to the landmarks. Another
very important improvement is to make the Vision system morerobust, so that it does
not need to check the recognized landmarks against the Visual Memory. Actually, we

6.8. Discussion and Future Work 105

should use the robust Vision system to adjust the imprecisions of the Visual Memory.
We also plan to convert the Vision system into a Multiagent Vision system. In this
system, several agents would process the camera images withdifferent algorithms, and
the agents should agree on what could be a good landmark candidate (salient enough,
robust, static, etc.). A final improvement of the Vision system would be to let it bid for
services by other systems (either the Pilot system or itself). With the bidding capability,
it could request the Pilot to approach a landmark to better recognize it, or even “request
itself” to slightly move the camera so that a partially visible landmark enters completely
the view field.

Chapter 7

Conclusions and Future Work

7.1 Revisiting the Objectives

The need for autonomous robots has been rapidly increasing in the last years. There
are many areas in which these robots are used, ranging from “service robots”, such as
museum guides or transportation robots in factories, to robots used for tasks to be per-
formed in inaccessible environments, such as planetary exploration, hazardous material
handling and rescue missions.

Usually, service robots operate in indoor structured environments. The problem of
navigating through indoor environments has been the focus of robotics research during
many years, and many successful results have been achieved.Usually, the map of
the environment is given a priori (either a detailed metric map or a topological one,
showing the spatial relationship among different places ofthe environment), or, when it
is not given, there is an initial phase for learning the map. Once it is learned, the robot
repeatedly performs the task in this environment. Examplesof such robots are those
performing delivery tasks in office environments or guidingtours in museums [67, 9].

On the other hand, inaccessible environments are usually unknown and unstructured
(as is the case in most outdoor environments), which pose a more difficult problem. The
lack of structure of such environments makes the map building very difficult. Moreover,
the large scale of these environments also adds to the difficulty of mapping and navi-
gation tasks. These characteristics make it impossible to apply the approaches used
in indoor structured environments. Although there has beenalso a lot of research on
navigation in unstructured environments, it is still an open problem.

This PhD thesis has focused on this latter problem, that is, on navigating in un-
known unstructured environments. The research was part of a robotics project whose
goal is to have a completely autonomous robot capable of navigating in outdoor un-
known environments. A human operator selects a target usingthe visual information
received from the robot’s camera, and the robot has to reach it without any further inter-
vention of the operator. Navigating to a target is a fundamental task of any mobile robot,
whatever its mission is (be it grasping objects, analyzing them, looking for something,
etc.) The task to be performed once the target has been reached is outside the scope of

107

108 Chapter 7. Conclusions and Future Work

the project and this thesis.
A first milestone of the project was to develop a navigation system for indoor un-

known unstructured environments. The reason for starting with indoor environments
was that the development of robust vision systems for outdoor environments is still an
open and very difficult problem in the field of computer vision. Therefore, since the
vision system was not the focus of our research, we decided tostart experimenting in-
doors, for which vision systems are much easier to develop. Moreover, we designed the
landmarks so that we could easily change their location, thus, permitting us to configure
scenarios of different complexity.

This thesis has reported the research carried out in order toaccomplish this first
milestone. For achieving it, we have combinedlandmark-based navigation, fuzzydis-
tance and angle representations andmultiagent coordinationbased on abidding mech-
anism. The objective of our research was to have arobust navigation system with
orientation sense for unknown unstructured environments using visual information.

7.2 Contributions

The research has been focused on two main threads: thecontrol architecture and the
mapping and navigation method. The contributions of the thesis on these two areas
are presented next.

Regarding thecontrol architecture, we have proposed a general coordination ar-
chitecture based on abiddingmechanism. In this architecture there are two types of
systems:executive systemsanddeliberative systems. Executive systems have access
to the sensors and actuators of the robot. These systems offer services for using the
actuators to the rest of the systems (either executive or deliberative) and also provide
information gathered from the sensors. On the other hand, deliberative systems take
higher-level decisions and require the services offered bythe executive systems in or-
der to carry out the task assigned to the robot. Although we differentiate between these
two types of systems, the architecture is not hierarchical,and coordination is made at
a single level involving all the systems. This coordinationis based on a simple mech-
anism:bidding. Deliberative systems always bid for the services offered by executive
systems, since this is the only way to have their decisions executed. Executive systems
that only offer services do not bid. However, those executive systems that require ser-
vices from any executive system (including themselves) must also bid for them. The
systems bid according to the internal expected utility associated to the provisioning of
the services. A coordinator receives these bids and decideswhich service each of the
executive systems has to perform.

The bidding mechanism assures that the action actually being executed by the robot
is the most valued one at each point in time, and thus, if the systems bid rationally,
the dynamics of the bids lead the robot to execute the necessary actions in order to
reach a given target. An advantage of using such mechanism isthat there is no need
to create a hierarchy, such as in the subsumption architecture, but it is dynamically
changing depending on the specific situation of the robot andthe characteristics of
the environment. A second advantage is that its modular viewconforms an extensible
architecture. To extend this architecture with a new capability we would just have to

7.2. Contributions 109

plug in a new system. Moreover, the coordination mechanism can be applied at different
levels of the architecture, be it at the overall architecture level, or within each one of the
systems.

For our specific navigation problem, we have instantiated this architecture with
three systems: the Pilot, Vision and Navigation systems. The first two being execu-
tive systems, and the latter one being deliberative. The Navigation system has been
designed as a multiagent system using the same bidding coordination mechanism used
in the overall architecture. The high-level task of navigating to a given target has been
decomposed into a set of simpler tasks, and we have designed one agent competent in
each of these tasks. These agents compete, since they may request the execution of con-
flicting actions. As in the overall architecture, each agentbids for the services offered
by the executive systems, and there is a coordinator agent that decides which is the most
urgent request. This request is then sent as the request of the Navigation system, which
will have to compete with the requests of the Pilot system.

Regarding themapping and navigation method, we have addressed two problems:
the problem of providing the robot with orientation sense and the problem of build-
ing a map of the environment and using it for navigational purposes. Concerning the
orientation sense, we have built upon previous work presented by Prescott [55], which
describes a model for storing spatial relationships among landmarks in the environment.
We have extended Prescott’s model so that it can be used with fuzzy information about
the locations of landmarks. This is of great importance whenworking with real robots,
as it is impossible to avoid dealing with the imprecision of real world environments. As
far as we know, this is the first application of Prescott’s model on a real robotic system.
As part of this extension, we have also developed methods forbuilding a topological
map of the environment, which is used for computing diverting targets, needed by the
robot when it finds that the path to the target is blocked.

Although the robotic system proposed in this thesis has beenpresented as a whole
system, including both the control architecture and the mapping method, they are
two solutions for two completely independent problems. Thus, we could substitute
Prescott’s mapping method by any other mapping method (be itanother topological ap-
proach, a metric approach, etc.). Obviously, the particularities of each system depend
on the mapping method (e.g. it would make no sense having a Vision system if the
map uses sonar readings), but the overall architecture and its coordination mechanism
would not be affected at all by the choice of this mapping method. Similarly, our map-
ping method could be used in a robotic system controlled by any other architecture (be
it hybrid, centralized, etc.).

We have obtained successful results, both on simulation andon real experimenta-
tion, showing that the mapping method is capable of buildinga map of an unknown
environment and using this information to move the robot from a starting point to a
given target. The experimentation also showed that the bidding mechanism we de-
signed for controlling the robot produces the overall behavior of executing the proper
action at each moment in order to reach the target. Thus, we consider that we have
satisfactorily achieved the objective of developing a navigation system with orientation
sense for unknown unstructured environments.

In parallel with the experimentation with the real robot, wehave also used simula-

110 Chapter 7. Conclusions and Future Work

tion to apply Machine Learning techniques. More concretely, we have used Reinforce-
ment Learning for having the system learn how to use the camera more appropriately,
that is, to use it only when needed. We have also used a GeneticAlgorithm approach,
in order to tune some of the parameters that define the behavior of the agents in the
Navigation system. Successful results have been obtained with both techniques, though
there is still much work to do. Actually, they could easily bethe subject of several PhD
theses, especially the work on Reinforcement Learning.

7.3 Future Work

Although, as we have just said, we consider that the goal of the thesis has been accom-
plished, there are plenty of improvements that could be donein order to achieve better
results. In the following sections we present, for each of the aspects of the research
carried out in this thesis, some of the open issues that deserve further research (some of
which we are already working on). Note that it is basically a compilation of the Future
Work sections of each of the previous chapters.

7.3.1 Mapping and Navigation

The extension of Prescott’s method, together with the algorithms to compute diverting
targets, has been shown to successfully encode the environment into a map that permits
navigating from a starting point to the target. However, we would like to explore other
mapping methods, so that the combination of the different methods adds robustness to
the Navigation system. With the current mapping method, therobot needs to see at least
three landmarks in order to be able to use the information stored in the map. We would
like to develop some other mapping methods to cope with the situations in which the
robot has very little information (i.e. less than three landmarks). These methods would
be even more qualitative than our fuzzy extension of Prescott’s method. We could, for
example, look at the field of Spatial Cognition, which works with spatial relationships
such as “landmark X is at the left hand side of the line connecting landmark Y and
landmark Z”.

7.3.2 Robot Architecture and Multiagent Navigation System

One of the first things to explore in our coordination architecture is the use of a more
economic view of the bidding mechanism. With this approach,each system (or agent)
would be assigned a limited credit, and they would only be allowed to bid if they had
enough credit. There should also be a way to reward the systems (agents). If not, they
would run out of credit after some time and no one would be ableto bid. The difficulty
of the reward mechanism is how to decide when to give a reward and who deserves to
receive it. This problem, known as the credit assignment problem, is very common in
multiagent learning systems, especially in ReinforcementLearning, and there is not a
general solution for it; each system uses an ad hoc solution for the task being learned.

An alternative to the economic view would be to have a mechanism to evaluate
the bidding of each system (agent), assigning them succeeding or failing bids, or some

7.3. Future Work 111

measure of trust, in order to take or not take into account their opinions. However, we
would face again the credit assignment problem.

Regarding the specific set of agents we have designed for solving the navigation
problem, we could introduce some improvements on some of them, and even add new
agents to the Navigation system. Some of these improvementscould go in the following
lines:

• Target Tracker: this agent could do some more intelligent tilt angle selection,
being a function of the distance to the target, thus, increasing the chances of
having it in the view field of the camera.

• Risk Manager: this agent could also bid not only for looking ahead or around, but
also to specific areas with fewer landmarks, or even selecting a random direction
to look to. Right now, if there are very few landmarks ahead, this agent sticks
bidding for looking ahead, and never bids for looking around, thus, ignoring a
large part of the environment. An alternative to modifying the Risk Manager
would be to add a new agent with this behavior.

Some improvements could also be done on the Pilot and Vision systems. Regarding
the Pilot, we could use a better obstacle avoidance algorithm. With the current algo-
rithm, only the closest obstacle is considered for computing the avoidance path. We
could improve the robot’s performance if the Pilot took intoaccount all the obstacles
and landmarks stored in the Visual Memory, thus, producing better avoidance paths We
are also planning to equip the robot with a laser scanner. This laser would be contin-
uously scanning a 180 degree area in front of the robot to accurately detect obstacles
that are several meters away. With this new sensor, the Pilotcould avoid the obstacles
before bumping into them, thus, generating better paths. Regarding the Vision system,
we plan several improvements. The first one is to finish the stereo algorithm, so we
can use the two available cameras. Another very important improvement is to make the
Vision system more robust, so that it does not need to check the recognized landmarks
against the Visual Memory. Actually, we should use the robust Vision system to adjust
the imprecisions of the Visual Memory. We also plan to convert the Vision system into
a Multiagent Vision system. In this system, several agents would process the camera
images with different algorithms, and the agents should agree on what could be a good
landmark (salient enough, robust, static, etc.). A final improvement of the Vision sys-
tem would be to let it bid for services by other systems (either the Pilot system or itself).
With the bidding capability, it could request the Pilot to approach a landmark to better
recognize it, or even “request itself” to slightly move the camera so that a partially seen
landmark enters completely the view field.

7.3.3 Reinforcement Learning

Although the results obtained through Reinforcement Learning showed that the system
learned to select actions in order to solve the complex camera tradeoff, we still need to
integrate it into the overall multi-agent system, to see if the performance of the whole
system is also improved. Even though theLearning Agentknows which actions it has

112 Chapter 7. Conclusions and Future Work

to bid for (following the learned policy), it is not clear what its bidding function should
be; it could be a constant bidding value, or a bidding depending on the values ofV (s).

Some more further work will be focused on the design of the state and feature repre-
sentation and the set of available actions. Asada et al. [5] proposed a solution for coping
with the “state-action deviation problem”, in which actions operate at a finer grain than
the features can represent, having the effect that most actions appear to leave the state
unchanged, and learning becomes impossible. We plan to evaluate the suitability of this
approach in our experiments. Regarding the action set design, we found that the set of
available actions was maybe too small and some more actions may be needed. We are
working on an “action refinement” method [20] that exploits prior knowledge informa-
tion about the similarity of actions to speed up the learningprocess. In this approach,
the set of available actions is larger, but in order to not slow down the learning process,
the actions are grouped into subsets of similar actions. Early in the learning process,
the Reinforcement Learning algorithm treats each subset ofsimilar actions as a single
“abstract” action, estimatingP (s′|s, a) not only from the execution of actiona, but also
from the execution of its similar actions. This action abstraction is later on stopped, and
then each action is treated on its own, thus, refining the values ofP (s′|s, a) learned
with abstraction.

7.3.4 Genetic Algorithm

We should analyze the generality, in terms of different environments and starting points,
of the parameters obtained by the genetic algorithm. Further work should also focus on
designing an agent capable of identifying the complexity ofthe task being performed,
so that the parameters can be switched from one set to another. We will explore the use
of Case Base Reasoning techniques on this “situation identifier” agent.

7.3.5 Real experimentation

The results obtained through real experimentation confirmed that, as already seen
through simulation, the bidding coordination mechanism and the mapping and navi-
gation methods work appropriately. Nonetheless, the scenarios used in the real ex-
periments were not very complex, and some more experimentation on more complex
scenarios should be performed. These new scenarios should include some more obsta-
cles, eventually having some cul-de-sacs, so that the robotwould need to undo the path
already done.

However, the big next step on our research is to move the experimentation to out-
door environments. The main difficulty of doing so is the availability of a vision system
for outdoors, which we do not have at this moment. However, wethink that the success-
ful results obtained on indoor unstructured environments could be quite easily obtained
outdoors, since neither the navigation method nor the control architecture are dramati-
cally affected by the differences of indoor/outdoor environments.

7.3. Future Work 113

7.3.6 Case Based Reasoning

Besides the use of CBR described in the Genetic Algorithm approach, we also plan to
add a CBR agent that would bid for actions. This agent would use the information of
past experiences in different trials (stored in form of{situation,action,result} tuples) to
recognize similar situations, and would then bid for executing the actions (or similar
actions) that best suited those situations. The difficulty of this approach is to find the
proper way to characterize the situations and how to comparetwo situations in order
to find out how similar they are. In this approach we also face the credit assignment
problem, since we cannot evaluate a situation-action experience until the robot either
successfully reaches the target or fails in its mission.

114 Chapter 7. Conclusions and Future Work

Bibliography

[1] J. Andrade-Cetto and A. Sanfeliu. Topological map learning for a mobile robot in
indoor environments. In J. S. Sànchez and F. Pla, editors,Proceedings of the 9th
Spanish Symposium on Pattern Recognition and Image Analysis, pages 221–226,
2001.

[2] R. C. Arkin. Path planning for a vision-based autonomousrobot. InProceedings
of the SPIE Conference on Mobile Robots, pages 240–249, 1986.

[3] R. C. Arkin. Behaviour-based Robotics. MIT Press, 1998.

[4] R.C. Arkin. Motor schema-based mobile robot navigation. International Journal
of Robotics research, 8(4):92–112, 1989.

[5] M. Asada, S. Noda, S. Tawaratsumida, and K. Hosoda. Purposive behavior acqui-
sition for a real robot by vision-based reinforcement learning. Machine Learning,
23:279–303, 1996.

[6] D. P. Bertsekas and J. N. Tsitsiklis.Neuro-Dynamic Programming. Athena Sci-
entific, Belmont, MA, 1996.

[7] G. Bojadziev and M. Bojadziev.Fuzzy sets, fuzzy logic, applications, volume 5 of
Advances in Fuzzy Systems. World Scientific, 1995.

[8] R. Brooks. A robust layered control system for a mobile robot. IEEE Journal of
Robotics and Automation, RA-2(1):14–23, 1986.

[9] W. Burgard, A. B. Cremers, D. Fox, G. Lakemeyer, D. Hähnel, D. Schulz,
W. Steiner, and S. Thrun. The interactive museum tour-guiderobot. InProceed-
ings of the Fifteenth National Conference on Artificial Intelligence (AAAI’98),
1998.

[10] D. Busquets, R. López de Màntaras, C. Sierra, and T.G.Dietterich. Reinforcement
learning for landmark-based robot navigation. InProceedings of the First Interna-
tional Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS
2002), pages 841–842. ACM press, 2002.

[11] D. Busquets, T.G. Dietterich, R. López de Màntaras, and C. Sierra. A mulit-
agent architecture integrating learning and fuzzy techniques for landmark-based

115

116 Bibliography

robot navigation.Lecture Notes in Computer Science (Proceedings of CCIA’02),
2504:269–281, 2002.

[12] D. Busquets, C. Sierra, and R. López de Màntaras. A multi-agent approach to
fuzzy landmark-based navigation.Journal of Multiple-Valued Logic and Soft
Computing, Old City Publishing (In press).

[13] D. Busquets, C. Sierra, and R. López de Màntaras. A multi-agent approach to
qualitative landmark-based navigation.Autonomous Robots, Kluwer Academic
Publishers (In press).

[14] M. Carreras, J. Batlle, and P. Ridao. Hybrid coordination of reinforcement
learning-based behaviours for auv control. InProceedings of IEEE/RSJ IROS,
2001.

[15] A. R. Cassandra, L. Pack Kaelbling, and M. L. Littman. Acting optimally in
partially observable stochastic domains. InProceedings of the Twelfth National
Conference on Artificial Intelligence (AAAI’94), pages 1023–1028, Cambridge,
MA, 1994. AAAI Press/MIT Press.

[16] J.A. Castellanos and J.D.Tardós.Mobile Robot Localization and Map Building:
A Multisensor Fusion Approach. Kluwer Academic Publishers, 2000.

[17] R. Chatila. Path planning and environment learning in amobile robot system. In
Proceedings of the 1982 European Conference on Artificial Intelligence (ECAI-
82), 1982.

[18] R. Chatila and J.P. Laumond. Position referencing and consistent world model-
ing for mobile robots. InProceedings of the IEEE International Conference on
Robotics and Automation, 1985.

[19] M.B. Dias and A. Stentz. A market approach to multirobotcoordination. Techni-
cal report, Robotics Institute, Carnegie Mellon University, 2001.

[20] T.G. Dietterich, D. Busquets, R.López de Màntaras, and C. Sierra. Action refine-
ment in reinforcement learning by probability. InProceedings of the 19th Inter-
national Conference on Machine Learning (ICML’02), pages 107–114, 2002.

[21] G. Dissanayake, P. Newman, S. Clark, H.F. Durrant-Whyte, and M. Csorba. A
solution to the simultaneous localisation and map building(slam) problem.IEEE
Transaction of Robotics and Automation, 17(3):229–241, 2001.

[22] R. O. Duda, P. E. Hart, and D. G. Stork.Pattern Classification. John Wiley &
Sons, Inc., 2001.

[23] A. Elfes. Sonar-based real-world mapping and navigation. IEEE Journal on
Robotics and Automation, 3(3):249–265, 1987.

[24] M. Teresa Escrig and F. Toledo. Autonomous robot navigation using human spa-
tial concepts.International Journal of Intelligent Systems, 15:165–196, 2000.

Bibliography 117

[25] R. Liscano et al. Using a blackboard to integrate multiple activities and achieve
strategic reasoning for mobile-robot navigation.IEEE Expert, 10(2):24–36, 1995.

[26] T. Finin, R. Fritzson, and D. McKay. An overview of KQML:A knowledge query
and manipulation language. Technical report, Department of Computer Science,
University of Maryland, Baltimore county, 1992.

[27] D. Fox, W. Burgard, and S. Thrun. Markov localization for mobile robots in
dynamic environments.Journal of Artificial Intelligence Research, 11:391–427,
1999.

[28] D. Gachet, M. A. Salichs, L. Moreno, and J. R. Pimentel. Learning emergent tasks
for an autonomous mobile robot. InProceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 290–297, 1994.

[29] E. Gat. Reliable Goal-Directed Reactive Control of Autonomous Mobile Robots.
PhD thesis, Virginia Polytechnic Institute and State University, Blacksburg, 1991.

[30] B. Hayes-Roth. An architecture for adaptive intelligent systems.Artificial Intelli-
gence, 72(1-2):329–365, January 1995.

[31] M. Humphrys. Action selection methods using reinforcement learning. In Pat-
tie Maes et al, editor,From Animals to Animats 4: Proceedings of the Fourth
International Conference on Simulation of Adaptive Behavior, pages 135–144,
Cambridge, MA, 1996. MIT Press.

[32] C. Isik and A.M. Meystel. Pilot level of a hierarchical controller for an unmanned
mobile robot.IEEE J. Robotics and Automation, 4(3):241–255, 1988.

[33] L.P. Kaelbling, A.R. Cassandra, and J.A. Kurien. Acting under uncertainty:
Discrete bayesian models for mobile-robot navigation. InProceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems, 1996.

[34] O. Khatib. Real-time obstacle avoidance for manipulators and mobile robots. In
Proceedings of the IEEE International Conference on Robotics and Automation,
pages 500–505, St. Louis, MO, 1985.

[35] D. Kortencamp and T. Weymouth. Topological mapping formobile robots using a
combination of sonar and vision sensing. InProceedings of the Twelfth National
Conference on Artificial Intelligence (AAAI’94), pages 979–984, 1994.

[36] D. M. Kortenkamp.Cognitive maps for mobile robots: A representation for map-
ping and navigation. PhD thesis, University of Michigan, Computer Science and
Engineering Department, Michigan, 1993.

[37] B. Krogh. A generalized potential field approach to obstacle avoidance con-
trol. Technical Report MS84-484, Society of ManufacturingEngineers, Dearborn,
Michigan, 1984.

118 Bibliography

[38] B.J. Kuipers and Y.-T. Byun. A robust qualitative method for spatial learning
in unknown environments. InProceedings of AAAI-88, Menlo Park, CA, 1988.
AAAI Press/MIT Press.

[39] T.S. Levitt and D.T. Lawton. Qualitative navigation for mobile robots.Artificial
Intelligence Journal, 44:305–360, 1990.

[40] M. López.Approaches to Map Generation by means of Collaborative Autonomous
Robots. PhD thesis, Universitat Autònoma de Barcelona, Bellaterra, Barcelona,
1999. Also asMonografies de l’IIIA(Vol. 11).

[41] M. López, F. Esteva, R. López de Mantaras, C. Sierra, and J. Amat. Map gen-
eration by cooperative low-cost robots in structured unknown environments.Au-
tonomous Robots, 5:53–61, 1998.

[42] R. Lumia. Using nasrem for real-time sensory interactive robot control.Robotica,
12(2):127–135, 1994.

[43] P. Maes. The dynamics of action selection. InProceedings of the Eleventh Inter-
national Joint Conference on Artificial Intelligence (IJCAI’89), pages 991–997,
1989.

[44] P. Maes and R. Brooks. Learning to co-ordinate behaviours. In Thomas Dietterich
and William Swartout, editors,Proceedings of the 8th National Conference on Ar-
tificial Intelligence (AAAI-90), volume 2, pages 796–802, July29 August–3 1990.

[45] S. Mahadevan and J. Connell. Automatic programming of behavior-based robots
using reinforcement learning.Artificial Intelligence, 55(2-3):311–365, June 1992.

[46] E. Martinez and C. Torras. Qualitative vision for the guidance of legged robots in
unstructured environments.Pattern Recognition, 34(8):1585–1599, 2001.

[47] M.J. Matarić. Navigating with a rat brain: a neurobiologically-inspired model
for robot spatial representation. In J.-A. Meyer and S.W. Wilson, editors,From
Animals to Animats, Cambridge, MA, 1991. MIT Press.

[48] M.J. Matarić. Behavior-based control: Main properties and implications. InPro-
ceedings of Workshop on Intelligent Control Systems, International Conference
on Robotics and Automation, Nice, France, 1992.

[49] A. W. Moore and C. G. Atkeson. Prioritized sweeping: Reinforcement learning
with less data and less time.Machine Learning, 13:103, 1993.

[50] H.P. Moravec. Toward automatic visual obstacle avoidance. InProceedings of
the Fifth International Joint Conference on Artificial Intelligence, page 584, Cam-
bridge, MA, 1977.

[51] H.P. Moravec. Sensor fusion in certainty grids for mobile robots. AI Magazine,
9(2):61–74, 1988.

Bibliography 119

[52] H.P. Moravec and A. Elfes. High resolution maps from wide angle sonar. In
Proceedings of the IEEE International Conference on Robotics and Automation,
pages 116–121, 1985.

[53] H. Muhlenbein and D. Schlierkamp-Voosen. The science of breeding and its
application to the breeder genetic algorithm (bga).Evolutionary Computation,
1(1):335–360, 1993.

[54] N.J. Nilsson. A mobile automaton: An application of ai techniques. InPro-
ceedings of the 1969 International Joint Conference on Artificial Intelligence (IJ-
CAI’69), 1969.

[55] T.J. Prescott. Spatial representation for navigationin animats.Adaptive Behavior,
4(2):85–125, 1996.

[56] J. Rosenblatt. Damn: A distributed architecture for mobile navigation. InProceed-
ings of the 1995 AAAI Spring Symposium on Lessons Learned from Implemented
Software Architectures for Physical Agents. AAAI Press, March 1995.

[57] A. Saffiotti, K. Konolige, and E.H. Ruspini. A multivalued-logic approach to
integrating planning and control.Artificial Intelligence, 76(1/2):481–526, 1995.

[58] A. Saffiotti, E.H. Ruspini, and K. Konolige. Integrating reactivity and goal-
directedness in a fuzzy controller. InProceedings of the 2nd Fuzzy-IEEE Con-
ference, 1993.

[59] C. Sierra, R. López de Màntaras, and D. Busquets. Multiagent bidding mecha-
nisms for robot qualitative navigation.Lecture Notes in Computer Science. Intel-
ligent Agents VII (Proceedings of ATAL’00), 1986:198–212, 2001.

[60] R. Simmons and S. Koenig. Probabilistic robot navigation in paritally observable
environments. InProceedings of IJCAI-95, pages 1080–1087, 1995.

[61] R. Smith, M. Self, and P. Cheeseman. Estimating uncertain spatial relationships
in robotics.Autonomous Robot Vehicles, pages 167–193, 1990.

[62] H. Stone.Introduction to Computer Architecture. SRA, 2nd edition, 1980.

[63] R. Sun and C. Sessions. Bidding in reinforcement learning: A paradigm for multi-
agent systems. In O. Etzioni, J.P. Müller and J.M. Bradshaw, editor,Proceedings
3rd Annual Conference on Autonomous Agents, pages 344–345, Seattle, 1999.

[64] R. Sutton and A. G. Barto.Introduction to Reinforcement Learning. MIT Press,
Cambridge, MA, 1998.

[65] S. Thrun. Bayesian landmark learning for mobile robot localization. Machine
Learning, 33(1):41–76, 1998.

[66] S. Thrun. Learning Metric-Topological Maps for IndoorMobile Robot Naviga-
tion. Artificial Intelligence, 99(1):21–71, 1998.

120 Bibliography

[67] S. Thrun, A. Bücken, W. Burgard, D. Fox, T. Fröhlinghaus, D. Henning, T. Hof-
mann, M. Krell, and T. Schmidt. Map learning and high-speed navigation in rhino.
In D. Kortenkamp, R.P. Bonasso, and R Murphy, editors,AI and Mobile Robots:
Case Studies of Successful Robot Systems, pages 21–52. MIT Press, 1998.

[68] D. Zipser. Biologically plausible models of place recognition and goal location.
In J.L. McClelland and D.E. Rumelhart, editors,Parallel Distributed Processing:
Explorations in the Micro-Structure of Cognition, Vol. 2, pages 432–470, Cam-
bridge, MA, 1986. Bradford Books.

