66 research outputs found

    Acetylated histone variant H2A.Z is involved in the activation of neo-enhancers in prostate cancer.

    Full text link
    Acetylation of the histone variant H2A.Z (H2A.Zac) occurs at active promoters and is associated with oncogene activation in prostate cancer, but its role in enhancer function is still poorly understood. Here we show that H2A.Zac containing nucleosomes are commonly redistributed to neo-enhancers in cancer resulting in a concomitant gain of chromatin accessibility and ectopic gene expression. Notably incorporation of acetylated H2A.Z nucleosomes is a pre-requisite for activation of Androgen receptor (AR) associated enhancers. H2A.Zac nucleosome occupancy is rapidly remodeled to flank the AR sites to initiate the formation of nucleosome-free regions and the production of AR-enhancer RNAs upon androgen treatment. Remarkably higher levels of global H2A.Zac correlate with poorer prognosis. Altogether these data demonstrate the novel contribution of H2A.Zac in activation of newly formed enhancers in prostate cancer

    A Multicellular Model of Intestinal Crypt Buckling and Fission

    Get PDF
    Crypt fission is an in vivo tissue deformation process that is involved in both intestinal homeostasis and colorectal tumourigenesis. Despite its importance, the mechanics underlying crypt fission are currently poorly understood. Recent experimental development of organoids, organ-like buds cultured from crypt stem cells in vitro, has shown promise in shedding light on crypt fission. Drawing inspiration from observations of organoid growth and fission in vivo, we develop a computational model of a deformable epithelial tissue layer. Results from in silico experiments show the stiffness of cells and the proportions of cell subpopulations affect the nature of deformation in the epithelial layer. In particular, we find that increasing the proportion of stiffer cells in the layer increases the likelihood of crypt fission occurring. This is in agreement with and helps explain recent experimental work

    The value of position-specific priors in motif discovery using MEME

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Position-specific priors have been shown to be a flexible and elegant way to extend the power of Gibbs sampler-based motif discovery algorithms. Information of many types–including sequence conservation, nucleosome positioning, and negative examples–can be converted into a prior over the location of motif sites, which then guides the sequence motif discovery algorithm. This approach has been shown to confer many of the benefits of conservation-based and discriminative motif discovery approaches on Gibbs sampler-based motif discovery methods, but has not previously been studied with methods based on expectation maximization (EM).</p> <p>Results</p> <p>We extend the popular EM-based MEME algorithm to utilize position-specific priors and demonstrate their effectiveness for discovering transcription factor (TF) motifs in yeast and mouse DNA sequences. Utilizing a discriminative, conservation-based prior dramatically improves MEME's ability to discover motifs in 156 yeast TF ChIP-chip datasets, more than doubling the number of datasets where it finds the correct motif. On these datasets, MEME using the prior has a higher success rate than eight other conservation-based motif discovery approaches. We also show that the same type of prior improves the accuracy of motifs discovered by MEME in mouse TF ChIP-seq data, and that the motifs tend to be of slightly higher quality those found by a Gibbs sampling algorithm using the same prior.</p> <p>Conclusions</p> <p>We conclude that using position-specific priors can substantially increase the power of EM-based motif discovery algorithms such as MEME algorithm.</p

    Combined changes in Wnt signalling response and contact inhibition induce altered proliferation in radiation treated intestinal crypts

    Get PDF
    Curative intervention is possible if colorectal cancer is identified early, underscoring the need to detect the earliest stages of malignant transformation. A candidate biomarker is the expanded proliferative zone observed in crypts before adenoma formation, also found in irradiated crypts. However, the underlying driving mechanism for this is not known. Wnt signaling is a key regulator of proliferation, and elevated Wnt signaling is implicated in cancer. Nonetheless, how cells differentiate Wnt signals of varying strengths is not understood. We use computational modeling to compare alternative hypotheses about how Wnt signaling and contact inhibition affect proliferation. Direct comparison of simulations with published experimental data revealed that the model that best reproduces proliferation patterns in normal crypts stipulates that proliferative fate and cell cycle duration are set by the Wnt stimulus experienced at birth. The model also showed that the broadened proliferation zone induced by tumorigenic radiation can be attributed to cells responding to lower Wnt concentrations and dividing at smaller volumes. Application of the model to data from irradiated crypts after an extended recovery period permitted deductions about the extent of the initial insult. Application of computational modeling to experimental data revealed how mechanisms that control cell dynamics are altered at the earliest stages of carcinogenesis

    Genome-wide patterns of promoter sharing and co-expression in bovine skeletal muscle

    Get PDF
    Background: Gene regulation by transcription factors (TF) is species, tissue and time specific. To better understand how the genetic code controls gene expression in bovine muscle we associated gene expression data from developing Longissimus thoracis et lumborum skeletal muscle with bovine promoter sequence information.Results: We created a highly conserved genome-wide promoter landscape comprising 87,408 interactions relating 333 TFs with their 9,242 predicted target genes (TGs). We discovered that the complete set of predicted TGs share an average of 2.75 predicted TF binding sites (TFBSs) and that the average co-expression between a TF and its predicted TGs is higher than the average co-expression between the same TF and all genes. Conversely, pairs of TFs sharing predicted TGs showed a co-expression correlation higher that pairs of TFs not sharing TGs. Finally, we exploited the co-occurrence of predicted TFBS in the context of muscle-derived functionally-coherent modules including cell cycle, mitochondria, immune system, fat metabolism, muscle/glycolysis, and ribosome. Our findings enabled us to reverse engineer a regulatory network of core processes, and correctly identified the involvement of E2F1, GATA2 and NFKB1 in the regulation of cell cycle, fat, and muscle/glycolysis, respectively.Conclusion: The pivotal implication of our research is two-fold: (1) there exists a robust genome-wide expression signal between TFs and their predicted TGs in cattle muscle consistent with the extent of promoter sharing; and (2) this signal can be exploited to recover the cellular mechanisms underpinning transcription regulation of muscle structure and development in bovine. Our study represents the first genome-wide report linking tissue specific co-expression to co-regulation in a non-model vertebrate

    Modelling the Spatio-Temporal Cell Dynamics Reveals Novel Insights on Cell Differentiation and Proliferation in the Small Intestinal Crypt

    Get PDF
    We developed a slow structural relaxation model to describe cellular dynamics in the crypt of the mouse small intestine. Cells are arranged in a three dimensional spiral the size of which dynamically changes according to cell production demands of adjacent villi. Cell differentiation and proliferation is regulated through Wnt and Notch signals, the strength of which depends on the local cell composition. The highest level of Wnt activity is associated with maintaining equipotent stem cells (SC), Paneth cells and common goblet-Paneth cell progenitors (CGPCPs) intermingling at the crypt bottom. Low levels of Wnt signalling area are associated with stem cells giving rise to secretory cells (CGPCPs, enteroendocrine or Tuft cells) and proliferative absorptive progenitors. Deciding between these two fates, secretory and stem/absorptive cells, depends on Notch signalling. Our model predicts that Notch signalling inhibits secretory fate if more than 50% of cells they are in contact with belong to the secretory lineage. CGPCPs under high Wnt signalling will differentiate into Paneth cells while those migrating out from the crypt bottom differentiate into goblet cells. We have assumed that mature Paneth cells migrating upwards undergo anoikis. Structural relaxation explains the localisation of Paneth cells to the crypt bottom in the absence of active forces. The predicted crypt generation time from one SC is 4–5 days with 10–12 days needed to reach a structural steady state. Our predictions are consistent with experimental observations made under altered Wnt and Notch signalling. Mutations affecting stem cells located at the crypt floor have a 50% chance of being propagated throughout the crypt while mutations in cells above are rarely propagated. The predicted recovery time of an injured crypt losing half of its cells is approximately 2 days

    Comparing individual-based approaches to modelling the self-organization of multicellular tissues.

    Get PDF
    The coordinated behaviour of populations of cells plays a central role in tissue growth and renewal. Cells react to their microenvironment by modulating processes such as movement, growth and proliferation, and signalling. Alongside experimental studies, computational models offer a useful means by which to investigate these processes. To this end a variety of cell-based modelling approaches have been developed, ranging from lattice-based cellular automata to lattice-free models that treat cells as point-like particles or extended shapes. However, it remains unclear how these approaches compare when applied to the same biological problem, and what differences in behaviour are due to different model assumptions and abstractions. Here, we exploit the availability of an implementation of five popular cell-based modelling approaches within a consistent computational framework, Chaste (http://www.cs.ox.ac.uk/chaste). This framework allows one to easily change constitutive assumptions within these models. In each case we provide full details of all technical aspects of our model implementations. We compare model implementations using four case studies, chosen to reflect the key cellular processes of proliferation, adhesion, and short- and long-range signalling. These case studies demonstrate the applicability of each model and provide a guide for model usage

    Repression of Meiotic Genes by Antisense Transcription and by Fkh2 Transcription Factor in Schizosaccharomyces pombe

    Get PDF
    In S. pombe, about 5% of genes are meiosis-specific and accumulate little or no mRNA during vegetative growth. Here we use Affymetrix tiling arrays to characterize transcripts in vegetative and meiotic cells. In vegetative cells, many meiotic genes, especially those induced in mid-meiosis, have abundant antisense transcripts. Disruption of the antisense transcription of three of these mid-meiotic genes allowed vegetative sense transcription. These results suggest that antisense transcription represses sense transcription of meiotic genes in vegetative cells. Although the mechanism(s) of antisense mediated transcription repression need to be further explored, our data indicates that RNAi machinery is not required for repression. Previously, we and others used non-strand specific methods to study splicing regulation of meiotic genes and concluded that 28 mid-meiotic genes are spliced only in meiosis. We now demonstrate that the “unspliced” signal in vegetative cells comes from the antisense RNA, not from unspliced sense RNA, and we argue against the idea that splicing regulates these mid-meiotic genes. Most of these mid-meiotic genes are induced in mid-meiosis by the forkhead transcription factor Mei4. Interestingly, deletion of a different forkhead transcription factor, Fkh2, allows low levels of sense expression of some mid-meiotic genes in vegetative cells. We propose that vegetative expression of mid-meiotic genes is repressed at least two independent ways: antisense transcription and Fkh2 repression

    Epigenetic reprogramming at estrogen-receptor binding sites alters 3D chromatin landscape in endocrine-resistant breast cancer

    Get PDF
    Endocrine therapy resistance frequently develops in estrogen receptor positive (ER+) breast cancer, but the underlying molecular mechanisms are largely unknown. Here, we show that 3-dimensional (3D) chromatin interactions both within and between topologically associating domains (TADs) frequently change in ER+ endocrine-resistant breast cancer cells and that the differential interactions are enriched for resistance-associated genetic variants at CTCF-bound anchors. Ectopic chromatin interactions are preferentially enriched at active enhancers and promoters and ER binding sites, and are associated with altered expression of ER-regulated genes, consistent with dynamic remodelling of ER pathways accompanying the development of endocrine resistance. We observe that loss of 3D chromatin interactions often occurs coincidently with hypermethylation and loss of ER binding. Alterations in active A and inactive B chromosomal compartments are also associated with decreased ER binding and atypical interactions and gene expression. Together, our results suggest that 3D epigenome remodelling is a key mechanism underlying endocrine resistance in ER+ breast cancer

    Biophysical Characterization of the Strong Stabilization of the RNA Triplex poly(U)•poly(A)*poly(U) by 9-O-(ω-amino) Alkyl Ether Berberine Analogs

    Get PDF
    Background: Binding of two 9-O-(v-amino) alkyl ether berberine analogs BC1 and BC2 to the RNA triplex poly(U)Npoly(A)*poly(U) was studied by various biophysical techniques. Methodology/Principal Findings: Berberine analogs bind to the RNA triplex non-cooperatively. The affinity of binding was remarkably high by about 5 and 15 times, respectively, for BC1 and BC2 compared to berberine. The site size for the binding was around 4.3 for all. Based on ferrocyanide quenching, fluorescence polarization, quantum yield values and viscosity results a strong intercalative binding of BC1 and BC2 to the RNA triplex has been demonstrated. BC1 and BC2 stabilized the Hoogsteen base paired third strand by about 18.1 and 20.5uC compared to a 17.5uC stabilization by berberine. The binding was entropy driven compared to the enthalpy driven binding of berbeine, most likely due to additional contacts within the grooves of the triplex and disruption of the water structure by the alkyl side chain. Conclusions/Significance: Remarkably higher binding affinity and stabilization effect of the RNA triplex by the amino alkyl berberine analogs was achieved compared to berberine. The length of the alkyl side chain influence in the triplex stabilization phenomena
    corecore