53 research outputs found

    Variation of health-related quality of life assessed by caregivers and patients affected by severe childhood infections.

    Get PDF
    BACKGROUND: The agreement between self-reported and proxy measures of health status in ill children is not well established. This study aimed to quantify the variation in health-related quality of life (HRQOL) derived from young patients and their carers using different instruments. METHODS: A hospital-based cross-sectional survey was conducted between August 2010 and March 2011. Children with meningitis, bacteremia, pneumonia, acute otitis media, hearing loss, chronic lung disease, epilepsy, mild mental retardation, severe mental retardation, and mental retardation combined with epilepsy, aged between five to 14 years in seven tertiary hospitals were selected for participation in this study. The Health Utilities Index Mark 2 (HUI2), and Mark 3 (HUI3), and the EuroQoL Descriptive System (EQ-5D) and Visual Analogue Scale (EQ-VAS) were applied to both paediatric patients (self-assessment) and caregivers (proxy-assessment). RESULTS: The EQ-5D scores were lowest for acute conditions such as meningitis, bacteremia, and pneumonia, whereas the HUI3 scores were lowest for most chronic conditions such as hearing loss and severe mental retardation. Comparing patient and proxy scores (n = 74), the EQ-5D exhibited high correlation (r = 0.77) while in the HUI2 and HUI3 patient and caregiver scores were moderately correlated (r = 0.58 and 0.67 respectively). The mean difference between self and proxy-assessment using the HUI2, HUI3, EQ-5D and EQ-VAS scores were 0.03, 0.05, -0.03 and -0.02, respectively. In hearing-impaired and chronic lung patients the self-rated HRQOL differed significantly from their caregivers. CONCLUSIONS: The use of caregivers as proxies for measuring HRQOL in young patients affected by pneumococcal infection and its sequelae should be employed with caution. Given the high correlation between instruments, each of the HRQOL instruments appears acceptable apart from the EQ-VAS which exhibited low correlation with the others

    Suppressing quantum errors by scaling a surface code logical qubit

    Full text link
    Practical quantum computing will require error rates that are well below what is achievable with physical qubits. Quantum error correction offers a path to algorithmically-relevant error rates by encoding logical qubits within many physical qubits, where increasing the number of physical qubits enhances protection against physical errors. However, introducing more qubits also increases the number of error sources, so the density of errors must be sufficiently low in order for logical performance to improve with increasing code size. Here, we report the measurement of logical qubit performance scaling across multiple code sizes, and demonstrate that our system of superconducting qubits has sufficient performance to overcome the additional errors from increasing qubit number. We find our distance-5 surface code logical qubit modestly outperforms an ensemble of distance-3 logical qubits on average, both in terms of logical error probability over 25 cycles and logical error per cycle (2.914%±0.016%2.914\%\pm 0.016\% compared to 3.028%±0.023%3.028\%\pm 0.023\%). To investigate damaging, low-probability error sources, we run a distance-25 repetition code and observe a 1.7×10−61.7\times10^{-6} logical error per round floor set by a single high-energy event (1.6×10−71.6\times10^{-7} when excluding this event). We are able to accurately model our experiment, and from this model we can extract error budgets that highlight the biggest challenges for future systems. These results mark the first experimental demonstration where quantum error correction begins to improve performance with increasing qubit number, illuminating the path to reaching the logical error rates required for computation.Comment: Main text: 6 pages, 4 figures. v2: Update author list, references, Fig. S12, Table I

    Measurement-induced entanglement and teleportation on a noisy quantum processor

    Full text link
    Measurement has a special role in quantum theory: by collapsing the wavefunction it can enable phenomena such as teleportation and thereby alter the "arrow of time" that constrains unitary evolution. When integrated in many-body dynamics, measurements can lead to emergent patterns of quantum information in space-time that go beyond established paradigms for characterizing phases, either in or out of equilibrium. On present-day NISQ processors, the experimental realization of this physics is challenging due to noise, hardware limitations, and the stochastic nature of quantum measurement. Here we address each of these experimental challenges and investigate measurement-induced quantum information phases on up to 70 superconducting qubits. By leveraging the interchangeability of space and time, we use a duality mapping, to avoid mid-circuit measurement and access different manifestations of the underlying phases -- from entanglement scaling to measurement-induced teleportation -- in a unified way. We obtain finite-size signatures of a phase transition with a decoding protocol that correlates the experimental measurement record with classical simulation data. The phases display sharply different sensitivity to noise, which we exploit to turn an inherent hardware limitation into a useful diagnostic. Our work demonstrates an approach to realize measurement-induced physics at scales that are at the limits of current NISQ processors

    Non-Abelian braiding of graph vertices in a superconducting processor

    Full text link
    Indistinguishability of particles is a fundamental principle of quantum mechanics. For all elementary and quasiparticles observed to date - including fermions, bosons, and Abelian anyons - this principle guarantees that the braiding of identical particles leaves the system unchanged. However, in two spatial dimensions, an intriguing possibility exists: braiding of non-Abelian anyons causes rotations in a space of topologically degenerate wavefunctions. Hence, it can change the observables of the system without violating the principle of indistinguishability. Despite the well developed mathematical description of non-Abelian anyons and numerous theoretical proposals, the experimental observation of their exchange statistics has remained elusive for decades. Controllable many-body quantum states generated on quantum processors offer another path for exploring these fundamental phenomena. While efforts on conventional solid-state platforms typically involve Hamiltonian dynamics of quasi-particles, superconducting quantum processors allow for directly manipulating the many-body wavefunction via unitary gates. Building on predictions that stabilizer codes can host projective non-Abelian Ising anyons, we implement a generalized stabilizer code and unitary protocol to create and braid them. This allows us to experimentally verify the fusion rules of the anyons and braid them to realize their statistics. We then study the prospect of employing the anyons for quantum computation and utilize braiding to create an entangled state of anyons encoding three logical qubits. Our work provides new insights about non-Abelian braiding and - through the future inclusion of error correction to achieve topological protection - could open a path toward fault-tolerant quantum computing

    Factors That Drive Peptide Assembly and Fibril Formation: Experimental and Theoretical Analysis of Sup35 NNQQNY Mutants

    Full text link
    Residue mutations have substantial effects on aggregation kinetics and propensities of amyloid peptides and their aggregate morphologies. Such effects are attributed to conformational transitions accessed by various types of oligomers such as steric zipper or single β-sheet. We have studied the aggregation propensities of six NNQQNY mutants: NVVVVY, NNVVNV, NNVVNY, VIQVVY, NVVQIY, and NVQVVY in water using a combination of ion-mobility mass spectrometry, transmission electron microscopy, atomic force microscopy, and all-atom molecular dynamics simulations. Our data show a strong correlation between the tendency to form early β-sheet oligomers and the subsequent aggregation propensity. Our molecular dynamics simulations indicate that the stability of a steric zipper structure can enhance the propensity for fibril formation. Such stability can be attained by either hydrophobic interactions in the mutant peptide or polar side-chain interdigitations in the wild-type peptide. The overall results display only modest agreement with the aggregation propensity prediction methods such as PASTA, Zyggregator, and RosettaProfile, suggesting the need for better parametrization and model peptides for these algorithms

    Atrial fibrillation genetic risk differentiates cardioembolic stroke from other stroke subtypes

    Get PDF
    AbstractObjectiveWe sought to assess whether genetic risk factors for atrial fibrillation can explain cardioembolic stroke risk.MethodsWe evaluated genetic correlations between a prior genetic study of AF and AF in the presence of cardioembolic stroke using genome-wide genotypes from the Stroke Genetics Network (N = 3,190 AF cases, 3,000 cardioembolic stroke cases, and 28,026 referents). We tested whether a previously-validated AF polygenic risk score (PRS) associated with cardioembolic and other stroke subtypes after accounting for AF clinical risk factors.ResultsWe observed strong correlation between previously reported genetic risk for AF, AF in the presence of stroke, and cardioembolic stroke (Pearson’s r=0.77 and 0.76, respectively, across SNPs with p &lt; 4.4 × 10−4 in the prior AF meta-analysis). An AF PRS, adjusted for clinical AF risk factors, was associated with cardioembolic stroke (odds ratio (OR) per standard deviation (sd) = 1.40, p = 1.45×10−48), explaining ∼20% of the heritable component of cardioembolic stroke risk. The AF PRS was also associated with stroke of undetermined cause (OR per sd = 1.07, p = 0.004), but no other primary stroke subtypes (all p &gt; 0.1).ConclusionsGenetic risk for AF is associated with cardioembolic stroke, independent of clinical risk factors. Studies are warranted to determine whether AF genetic risk can serve as a biomarker for strokes caused by AF.</jats:sec

    Archeological investigations in Ste. Genevieve County, Missouri

    No full text
    Volume: 46Start Page: 641End Page: 66

    Burials of the Algonquian, Siouan and Caddoan Tribes west of the Mississippi.

    No full text
    • …
    corecore