20 research outputs found

    Microporous scaffolds loaded with immunomodulatory lentivirus to study the contribution of immune cell populations to tumor cell recruitment in vivo

    Full text link
    Metastases are preceded by stochastic formation of a hospitable microenvironment known as the premetastatic niche, which has been difficult to study. Herein, we employ implantable polycaprolactone scaffolds as an engineered premetastatic niche to independently investigate the role of interleukin‐10 (IL10), CXCL12, and CCL2 in recruiting immune and tumor cells and impacting breast cancer cell phenotype via lentiviral overexpression. Lentivirus delivered from scaffolds in vivo achieved sustained transgene expression for 56 days. IL10 lentiviral expression, but not CXCL12 or CCL2, significantly decreased tumor cell recruitment to scaffolds in vivo. Delivery of CXCL12 enhanced CD45+ immune cell recruitment to scaffolds while delivery of IL10 reduced immune cell recruitment. CCL2 did not alter immune cell recruitment. Tumor cell phenotype was investigated using conditioned media from immunomodulated scaffolds, with CXCL12 microenvironments reducing proliferation, and IL10 microenvironments enhancing proliferation. Migration was enhanced with CCL2 and reduced with IL10‐driven microenvironments. Multiple linear regression identified populations of immune cells associated with tumor cell abundance. CD45+ immune and CD8+ T cells were associated with reduced tumor cell abundance, while CD11b+Gr1+ neutrophils and CD4+ T cells were associated with enhanced tumor cell abundance. Collectively, biomaterial scaffolds provide a tool to probe the formation and function of the premetastatic niche.Metastases are preceded by stochastic formation of a hospitable microenvironment known as the premetastatic niche, which has been difficult to study. Herein, we employ implantable polycaprolactone scaffolds as an engineered premetastatic niche to independently investigate the role of interleukin‐10 (IL10), CXCL12, and CCL2 in recruiting immune and tumor cells and impacting breast cancer cell phenotype via lentiviral overexpression.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/153114/1/bit27179.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/153114/2/bit27179_am.pd

    Pancreatic cancer is marked by complement-high blood monocytes and tumor-associated macrophages

    Get PDF
    Pancreatic ductal adenocarcinoma (PDA) is accompanied by reprogramming of the local microenvironment, but changes at distal sites are poorly understood. We implanted biomaterial scaffolds, which act as an artificial premetastatic niche, into immunocompetent tumor-bearing and control mice, and identified a unique tumor-specific gene expression signature that includes high expression of C1qa, C1qb, Trem2, and Chil3 Single-cell RNA sequencing mapped these genes to two distinct macrophage populations in the scaffolds, one marked by elevated C1qa, C1qb, and Trem2, the other with high Chil3, Ly6c2 and Plac8 In mice, expression of these genes in the corresponding populations was elevated in tumor-associated macrophages compared with macrophages in the normal pancreas. We then analyzed single-cell RNA sequencing from patient samples, and determined expression of C1QA, C1QB, and TREM2 is elevated in human macrophages in primary tumors and liver metastases. Single-cell sequencing analysis of patient blood revealed a substantial enrichment of the same gene signature in monocytes. Taken together, our study identifies two distinct tumor-associated macrophage and monocyte populations that reflects systemic immune changes in pancreatic ductal adenocarcinoma patients

    Biomaterial Scaffolds as Pre‐metastatic Niche Mimics Systemically Alter the Primary Tumor and Tumor Microenvironment

    Full text link
    Primary tumor (PT) immune cells and pre‐metastatic niche (PMN) sites are critical to metastasis. Recently, synthetic biomaterial scaffolds used as PMN mimics are shown to capture both immune and metastatic tumor cells. Herein, studies are performed to investigate whether the scaffold‐mediated redirection of immune and tumor cells would alter the primary tumor microenvironment (TME). Transcriptomic analysis of PT cells from scaffold‐implanted and mock‐surgery mice identifies differentially regulated pathways relevant to invasion and metastasis progression. Transcriptomic differences are hypothesized to result from scaffold‐mediated modulations of immune cell trafficking and phenotype in the TME. Culturing tumor cells with conditioned media generated from PT immune cells of scaffold‐implanted mice decrease invasion in vitro more than two‐fold relative to mock surgery controls and reduce activity of invasion‐promoting transcription factors. Secretomic characterization of the conditioned media delineates interactions between immune cells in the TME and tumor cells, showing an increase in the pan‐metastasis inhibitor decorin and a concomitant decrease in invasion‐promoting chemokine (C‐C motif) ligand 2 (CCL2) in scaffold‐implanted mice. Flow cytometric and transcriptomic profiling of PT immune cells identify phenotypically distinct tumor‐associated macrophages (TAMs) in scaffold‐implanted mice, which may contribute to an invasion‐suppressive TME. Taken together, this study demonstrates biomaterial scaffolds systemically influence metastatic progression through manipulation of the TME.Biomaterial implants that mimic the pre‐metastatic niche are shown to redirect immune and tumor cell populations in vivo. However, the systemic effects of pre‐metastatic niche mimics on metastasis progression have yet to be characterized. In this work, synthetic biomaterial implants were shown to systemically alter the primary tumor and the tumor microenvironment to promote an invasion‐suppressive phenotype.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/144244/1/adhm201700903-sup-0001-S1.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/144244/2/adhm201700903_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/144244/3/adhm201700903.pd

    Plastid phylogenomics resolves ambiguous relationships within the orchid family and provides a solid timeframe for biogeography and macroevolution

    Get PDF
    Recent phylogenomic analyses based on the maternally inherited plastid organelle have enlightened evolutionary relationships between the subfamilies of Orchidaceae and most of the tribes. However, uncertainty remains within several subtribes and genera for which phylogenetic relationships have not ever been tested in a phylogenomic context. To address these knowledge-gaps, we here provide the most extensively sampled analysis of the orchid family to date, based on 78 plastid coding genes representing 264 species, 117 genera, 18 tribes and 28 subtribes. Divergence times are also provided as inferred from strict and relaxed molecular clocks and birth–death tree models. Our taxon sampling includes 51 newly sequenced plastid genomes produced by a genome skimming approach. We focus our sampling efforts on previously unplaced clades within tribes Cymbidieae and Epidendreae. Our results confirmed phylogenetic relationships in Orchidaceae as recovered in previous studies, most of which were recovered with maximum support (209 of the 262 tree branches). We provide for the first time a clear phylogenetic placement for Codonorchideae within subfamily Orchidoideae, and Podochilieae and Collabieae within subfamily Epidendroideae. We also identify relationships that have been persistently problematic across multiple studies, regardless of the different details of sampling and genomic datasets used for phylogenetic reconstructions. Our study provides an expanded, robust temporal phylogenomic framework of the Orchidaceae that paves the way for biogeographical and macroevolutionary studies.Universidad de Costa Rica/[814-B8-257]/UCR/Costa RicaUniversidad de Costa Rica/[814-B6-140]/UCR/Costa RicaIDEA WILD/[]//Estados UnidosSociedad Colombiana de Orquideología/[]/SCO/ColombiaFundação de Amparo à Pesquisa do Estado de São Paulo/[11/08308-9]/FAPESP/BrasilFundação de Amparo à Pesquisa do Estado de São Paulo/[13/19124-1]/FAPESP/BrasilSwiss Orchid Foundation/[]//SuizaRoyal Botanic Gardens, Kew/[]//InglaterraSwedish Research Council/[2019-05191]//SueciaSwedish Foundation for Strategic Research/[FFL15-0196]/SSF/SueciaUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Agroalimentarias::Jardín Botánico Lankester (JBL

    Microporous scaffolds loaded with immunomodulatory lentivirus to study the contribution of immune cell populations to tumor cell recruitment in vivo

    No full text
    Metastases are preceded by stochastic formation of a hospitable microenvironment known as the premetastatic niche, which has been difficult to study. Herein, we employ implantable polycaprolactone scaffolds as an engineered premetastatic niche to independently investigate the role of interleukin‐10 (IL10), CXCL12, and CCL2 in recruiting immune and tumor cells and impacting breast cancer cell phenotype via lentiviral overexpression. Lentivirus delivered from scaffolds in vivo achieved sustained transgene expression for 56 days. IL10 lentiviral expression, but not CXCL12 or CCL2, significantly decreased tumor cell recruitment to scaffolds in vivo. Delivery of CXCL12 enhanced CD45+ immune cell recruitment to scaffolds while delivery of IL10 reduced immune cell recruitment. CCL2 did not alter immune cell recruitment. Tumor cell phenotype was investigated using conditioned media from immunomodulated scaffolds, with CXCL12 microenvironments reducing proliferation, and IL10 microenvironments enhancing proliferation. Migration was enhanced with CCL2 and reduced with IL10‐driven microenvironments. Multiple linear regression identified populations of immune cells associated with tumor cell abundance. CD45+ immune and CD8+ T cells were associated with reduced tumor cell abundance, while CD11b+Gr1+ neutrophils and CD4+ T cells were associated with enhanced tumor cell abundance. Collectively, biomaterial scaffolds provide a tool to probe the formation and function of the premetastatic niche.Metastases are preceded by stochastic formation of a hospitable microenvironment known as the premetastatic niche, which has been difficult to study. Herein, we employ implantable polycaprolactone scaffolds as an engineered premetastatic niche to independently investigate the role of interleukin‐10 (IL10), CXCL12, and CCL2 in recruiting immune and tumor cells and impacting breast cancer cell phenotype via lentiviral overexpression.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/153114/1/bit27179.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/153114/2/bit27179_am.pd

    Metastatic Conditioning of Myeloid Cells at a Subcutaneous Synthetic Niche Reflects Disease Progression and Predicts Therapeutic Outcomes

    No full text
    Monitoring metastatic events in distal tissues is challenged by their sporadic occurrence in obscure and inaccessible locations within these vital organs. A synthetic biomaterial scaffold can function as a synthetic metastatic niche to reveal the nature of these distal sites. These implanted scaffolds promote tissue ingrowth, which upon cancer initiation is transformed into a metastatic niche that captures aggressive circulating tumor cells. We hypothesized that immune cell phenotypes at synthetic niches reflect the immunosuppressive conditioning within a host that contributes to metastatic cell recruitment and can identify disease progression and response to therapy. We analyzed the expression of 632 immune-centric genes in tissue biopsied from implants at weekly intervals following inoculation. Specific immune populations within implants were then analyzed by single-cell RNA-seq. Dynamic gene expression profiles in innate cells, such as myeloid-derived suppressor cells, macrophages, and dendritic cells, suggest the development of an immunosuppressive microenvironment. These dynamics in immune phenotypes at implants was analogous to that in the diseased lung and had distinct dynamics compared with blood leukocytes. Following a therapeutic excision of the primary tumor, longitudinal tracking of immune phenotypes at the implant in individual mice showed an initial response to therapy, which over time differentiated recurrence versus survival. Collectively, the microenvironment at the synthetic niche acts as a sentinel by reflecting both progression and regression of disease. SIGNIFICANCE: Immune dynamics at biomaterial implants, functioning as a synthetic metastatic niche, provides unique information that correlates with disease progression. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/3/602/F1.large.jpg
    corecore