929 research outputs found

    Metal chaperones prevent zinc-mediated cognitive decline

    Full text link
    © 2014 Elsevier Inc. Zinc transporter-3 (ZnT3) protein is responsible for loading zinc into presynaptic vesicles and consequently controls the availability of zinc at the glutamatergic synapse. ZnT3 has been shown to decline with age and in Alzheimer's disease (AD) and is crucially involved in learning and memory. In this study, we utilised whole animal behavioural analyses in the ZnT3 KO mouse line, together with electrophysiological analysis of long-term potentiation in brain slices from ZnT3 KO mice, to show that metal chaperones (clioquinol, 30 mg/kg/day for 6 weeks) can prevent the age-dependent cognitive phenotype that characterises these animals. This likely occurs as a result of a homeostatic restoration of synaptic protein expression, as clioquinol significantly restored levels of various pre- and postsynaptic proteins that are critical for normal cognition, including PSD-95; AMPAR and NMDAR2b. We hypothesised that this clioquinol-mediated restoration of synaptic health resulted from a selective increase in synaptic zinc content within the hippocampus. While we demonstrated a small regional increase in hippocampal zinc content using synchrotron x-ray fluorescence microscopy, further sub-region analyses are required to determine whether this effect is seen in other regions of the hippocampal formation that are more closely linked to the synaptic plasticity effects observed in this study. These data support our recent report on the use of a different metal chaperone (PBT2) to prevent normal age-related cognitive decline and demonstrate that metal chaperones are efficacious in preventing the zinc-mediated cognitive decline that characterises ageing and disease

    Three-dimensional elemental bio-imaging of Fe, Zn, Cu, Mn and P in a 6-hydroxydopamine lesioned mouse brain

    Full text link
    Three dimensional maps of iron (Fe), zinc (Zn), copper (Cu), manganese (Mn) and phosphorous (P) in a 6-hydroxydopamine (6-OHDA) lesioned mouse brain were constructed employing a novel quantitative laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) imaging method known as elemental bio-imaging. The 3D maps were produced by ablating serial consecutive sections taken from the same animal. Each section was quantified against tissue standards resulting in a three dimensional map that represents the variation of trace element concentrations of the mouse brain in the area surrounding the substantia nigra (SN). Damage caused by the needle or the toxin did not alter the distribution of Zn, and Cu but significantly altered Fe in and around the SN and both Mn and Fe around the needle track. A 20% increase in nigral Fe concentration was observed within the lesioned hemisphere. This technique clearly shows the natural heterogeneous distributions of these elements throughout the brain and the perturbations that occur following trauma or intoxication. The method may applied to three-dimensional modelling of trace elements in a wide range of tissue samples. © 2010 The Royal Society of Chemistry

    Functional diversity of marine ecosystems after the Late Permian mass extinction event

    Get PDF
    Article can be accessed from http://www.nature.com/ngeo/journal/v7/n3/full/ngeo2079.htmlThe Late Permian mass extinction event was the most severe such crisis of the past 500 million years and occurred during an episode of global warming. It is assumed to have had significant ecological impact, but its effects on marine ecosystem functioning are unknown and the patterns of marine recovery are debated. We analysed the fossil occurrences of all known Permian-Triassic benthic marine genera and assigned each to a functional group based on their inferred life habit. We show that despite the selective extinction of 62-74% of marine genera there was no significant loss of functional diversity at the global scale, and only one novel mode of life originated in the extinction aftermath. Early Triassic marine ecosystems were not as ecologically depauperate as widely assumed, which explains the absence of a Cambrian-style Triassic radiation in higher taxa. Functional diversity was, however, significantly reduced in particular regions and habitats, such as tropical reefs, and at these scales recovery varied spatially and temporally, probably driven by migration of surviving groups. Marine ecosystems did not return to their pre-extinction state, however, and radiation of previously subordinate groups such as motile, epifaunal grazers led to greater functional evenness by the Middle Triassic

    Trophy hunting certification

    Get PDF
    Adaptive certification is the best remaining option for the trophy hunting industry in Africa to demonstrate sustainable and ethical hunting practices that benefit local communities and wildlife conservation

    Profiling the iron, copper and zinc content in primary neuron and astrocyte cultures by rapid online quantitative size exclusion chromatography-inductively coupled plasma-mass spectrometry

    Get PDF
    Metals often determine the chemical reactivity of the proteins to which they are bound. Each cell in the body tightly maintains a unique metalloproteomic profile, mostly dependent on function. This paper describes an analytical online flow injection quantitative size exclusion chromatography-inductively coupled plasma-mass spectrometry (SEC-ICP-MS) method, which was applied to profiling the metal-binding proteins found in primary cultures of neurons and astrocytes. This method can be conducted using similar amounts of sample to those used for Western blotting (20-150 μg protein), and has a turnaround time of <15 minutes. Metalloprotein standards for Fe (as ferritin), Cu and Zn (as superoxide dismutase-1) were used to construct multi-point calibration curves for online quantification of metalloproteins by SEC-ICP-MS. Homogenates of primary neuron and astrocyte cultures were analysed by SEC-ICP-MS. Online quantification by external calibration with metalloprotein standards determined the mass of metal eluting from the column relative to time (as pg s-1). Total on-column Fe, Cu and Zn detection limits ranged from 0.825 ± 0.005 ng to 13.6 ± 0.7 pg. Neurons and astrocytes exhibited distinct metalloprotein profiles, featuring both ubiquitous and unique metalloprotein species. Separation and detection by SEC-ICP-MS allows appraisal of these metalloproteins in their native state, and online quantification was achieved using this relatively simple external calibration process. © 2013 The Royal Society of Chemistry

    Visualising mouse neuroanatomy and function by metal distribution using laser ablation-inductively coupled plasma-mass spectrometry imaging

    Get PDF
    © The Royal Society of Chemistry 2015. Metals have a number of important roles within the brain. We used laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to map the three-dimensional concentrations and distributions of transition metals, in particular iron (Fe), copper (Cu) and zinc (Zn) within the murine brain. LA-ICP-MS is one of the leading analytical tools for measuring metals in tissue samples. Here, we present a complete data reduction protocol for measuring metals in biological samples, including the application of a pyramidal voxel registration technique to reproducibly align tissue sections. We used gold (Au) nanoparticle and ytterbium (Yb)-tagged tyrosine hydroxylase antibodies to assess the co-localisation of Fe and dopamine throughout the entire mouse brain. We also examined the natural clustering of metal concentrations within the murine brain to elucidate areas of similar composition. This clustering technique uses a mathematical approach to identify multiple 'elemental clusters', avoiding user bias and showing that metal composition follows a hierarchical organisation of neuroanatomical structures. This work provides new insight into the distinct compartmentalisation of metals in the brain, and presents new avenues of exploration with regard to region-specific, metal-associated neurodegeneration observed in several chronic neurodegenerative diseases

    A Lithium Depletion Age for the Carina Association

    Full text link
    The dispersed remnants of stellar nurseries, stellar associations provide unparalleled samples of coeval stars critical for studies of stellar and planetary formation and evolution. The Carina Stellar Association is one of the closest stellar associations to Earth, and yet measurements of its age have varied from 13 to 45 Myr. We aim to update the age of Carina using the Lithium Depletion Boundary method. We obtain new measurements of the Li 6708 Angstrom, absorption feature in likely members using optical spectra from the Goodman HTS on SOAR and NRES on LCO. We detect the depletion boundary at M_K ~= 6.8 (M5), which corresponds to an age of 41(+3,-5) Myr. The age is consistent within uncertainties across six different models, including those that account for magnetic fields and spots. We also estimate the age through analysis of the group's overall variability, and by comparing the association members' CMD to stellar evolutionary models using a Gaussian Mixture Model, recovering ages consistent with the LDB. The resulting age agrees with the older end of previous age measurements and is consistent with the lithium depletion age for the neighboring Tucana-Horologium Moving Group.Comment: 9 pages, 6 figures, accepted to AJ on 10/17/202

    Calcitization of aragonitic bryozoans in Cenozoic tropical carbonates from East Kalimantan, Indonesia

    Get PDF
    © The Author(s) 2016. Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The file attached is the published version of the article

    Correction to: The novel compound PBT434 prevents iron mediated neurodegeneration and alpha-synuclein toxicity in multiple models of Parkinson's disease.

    Get PDF
    Following publication of the original article [1], the author identified an error in Fig. 4E. The data and statistics were correct, but the synaptophysin blot was incorrect. The incorrect (Fig. 1) and correct figure (Fig. 2) are shown in this correction article. (Figure presented.)
    • …
    corecore