322 research outputs found

    Analytic theory of orbit contraction

    Get PDF
    The motion of a satellite in orbit, subject to atmospheric force and the motion of a reentry vehicle are governed by gravitational and aerodynamic forces. This suggests the derivation of a uniform set of equations applicable to both cases. For the case of satellite motion, by a proper transformation and by the method of averaging, a technique appropriate for long duration flight, the classical nonlinear differential equation describing the contraction of the major axis is derived. A rigorous analytic solution is used to integrate this equation with a high degree of accuracy, using Poincare's method of small parameters and Lagrange's expansion to explicitly express the major axis as a function of the eccentricity. The solution is uniformly valid for moderate and small eccentricities. For highly eccentric orbits, the asymptotic equation is derived directly from the general equation. Numerical solutions were generated to display the accuracy of the analytic theory

    The limit space of a Cauchy sequence of globally hyperbolic spacetimes

    Full text link
    In this second paper, I construct a limit space of a Cauchy sequence of globally hyperbolic spacetimes. In the second section, I work gradually towards a construction of the limit space. I prove the limit space is unique up to isometry. I als show that, in general, the limit space has quite complicated causal behaviour. This work prepares the final paper in which I shall study in more detail properties of the limit space and the moduli space of (compact) globally hyperbolic spacetimes (cobordisms). As a fait divers, I give in this paper a suitable definition of dimension of a Lorentz space in agreement with the one given by Gromov in the Riemannian case.Comment: 31 pages, 5 figures, submitted to Classical and Quantum gravity, seriously improved presentatio

    The moduli space of isometry classes of globally hyperbolic spacetimes

    Get PDF
    This is the last article in a series of three initiated by the second author. We elaborate on the concepts and theorems constructed in the previous articles. In particular, we prove that the GH and the GGH uniformities previously introduced on the moduli space of isometry classes of globally hyperbolic spacetimes are different, but the Cauchy sequences which give rise to well-defined limit spaces coincide. We then examine properties of the strong metric introduced earlier on each spacetime, and answer some questions concerning causality of limit spaces. Progress is made towards a general definition of causality, and it is proven that the GGH limit of a Cauchy sequence of Cα±\mathcal{C}^{\pm}_{\alpha}, path metric Lorentz spaces is again a Cα±\mathcal{C}^{\pm}_{\alpha}, path metric Lorentz space. Finally, we give a necessary and sufficient condition, similar to the one of Gromov for the Riemannian case, for a class of Lorentz spaces to be precompact.Comment: 29 pages, 9 figures, submitted to Class. Quant. Gra
    • …
    corecore