763 research outputs found
Substrate binding on the APC/C occurs between the coactivator Cdh1 and the processivity factor Doc1.
Origin of the reduced exchange bias in epitaxial FeNi(111)/CoO(111) bilayer
We have employed Soft and Hard X-ray Resonant Magnetic Scattering and
Polarised Neutron Diffraction to study the magnetic interface and the bulk
antiferromagnetic domain state of the archetypal epitaxial
NiFe(111)/CoO(111) exchange biased bilayer. The combination of
these scattering tools provides unprecedented detailed insights into the still
incomplete understanding of some key manifestations of the exchange bias
effect. We show that the several orders of magnitude difference between the
expected and measured value of exchange bias field is caused by an almost
anisotropic in-plane orientation of antiferromagnetic domains. Irreversible
changes of their configuration lead to a training effect. This is directly seen
as a change in the magnetic half order Bragg peaks after magnetization
reversal. A 30 nm size of antiferromagnetic domains is extracted from the width
the (1/2 1/2 1/2) antiferromagnetic magnetic peak measured both by neutron and
x-ray scattering. A reduced blocking temperature as compared to the measured
antiferromagnetic ordering temperature clearly corresponds to the blocking of
antiferromagnetic domains. Moreover, an excellent correlation between the size
of the antiferromagnetic domains, exchange bias field and frozen-in spin ratio
is found, providing a comprehensive understanding of the origin of exchange
bias in epitaxial systems.Comment: 8 pages, 5 figures, submitte
An Efficient Molecular Dynamics Scheme for the Calculation of Dopant Profiles due to Ion Implantation
We present a highly efficient molecular dynamics scheme for calculating the
concentration depth profile of dopants in ion irradiated materials. The scheme
incorporates several methods for reducing the computational overhead, plus a
rare event algorithm that allows statistically reliable results to be obtained
over a range of several orders of magnitude in the dopant concentration.
We give examples of using this scheme for calculating concentration profiles
of dopants in crystalline silicon. Here we can predict the experimental profile
over five orders of magnitude for both channeling and non-channeling implants
at energies up to 100s of keV.
The scheme has advantages over binary collision approximation (BCA)
simulations, in that it does not rely on a large set of empirically fitted
parameters. Although our scheme has a greater computational overhead than the
BCA, it is far superior in the low ion energy regime, where the BCA scheme
becomes invalid.Comment: 17 pages, 21 figures, 2 tables. See: http://bifrost.lanl.gov/~reed
Recalculation of Proton Compton Scattering in Perturbative QCD
At very high energy and wide angles, Compton scattering on the proton (gamma
p -> gamma p) is described by perturbative QCD. The perturbative QCD
calculation has been performed several times previously, at leading twist and
at leading order in alpha_s, with mutually inconsistent results, even when the
same light-cone distribution amplitudes have been employed. We have
recalculated the helicity amplitudes for this process, using contour
deformations to evaluate the singular integrals over the light-cone momentum
fractions. We do not obtain complete agreement with any previous result. Our
results are closest to those of the most recent previous computation, differing
significantly for just one of the three independent helicity amplitudes, and
only for backward scattering angles. We present results for the unpolarized
cross section, and for three different polarization asymmetries. We compare the
perturbative QCD predictions for these observables with those of the handbag
and diquark models. In order to reduce uncertainties associated with alpha_s
and the three-quark wave function normalization, we have normalized the Compton
cross section using the proton elastic form factor. The theoretical predictions
for this ratio are about an order of magnitude below existing experimental
data.Comment: Latex, 23 pages, 13 figures. Checked numerical integration one more
way; added results for one more proton distribution amplitude; a few other
minor changes. Version to appear in Phys. Rev.
Recommended from our members
Characterization of the state of dispersion of carbon nanotubes in polymer nanocomposites
A practical overview of possibilities and limits to characterize the state of dispersion of carbon nanotubes (CNT) in polymer based nanocomposites is given. The most important and widely available methods are discussed with practical employment in mind. One focus is the quantitative characterization of the state of dispersion in solid samples using microscopy techniques such as optical microscopy or transmission electron microscopy. For dispersions of CNTs in aqueous media, solvents or monomers a sedimentation analysis is presented. This way dispersability and dispersion state of CNTs can be assessed. Indirect methods such as electrical conductivity measurements and rheological tests, dynamic differential scanning calorimetry and mechanical test are discussed. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Differential (2+1) Jet Event Rates and Determination of alpha_s in Deep Inelastic Scattering at HERA
Events with a (2+1) jet topology in deep-inelastic scattering at HERA are
studied in the kinematic range 200 < Q^2< 10,000 GeV^2. The rate of (2+1) jet
events has been determined with the modified JADE jet algorithm as a function
of the jet resolution parameter and is compared with the predictions of Monte
Carlo models. In addition, the event rate is corrected for both hadronization
and detector effects and is compared with next-to-leading order QCD
calculations. A value of the strong coupling constant of alpha_s(M_Z^2)=
0.118+- 0.002 (stat.)^(+0.007)_(-0.008) (syst.)^(+0.007)_(-0.006) (theory) is
extracted. The systematic error includes uncertainties in the calorimeter
energy calibration, in the description of the data by current Monte Carlo
models, and in the knowledge of the parton densities. The theoretical error is
dominated by the renormalization scale ambiguity.Comment: 25 pages, 6 figures, 3 tables, submitted to Eur. Phys.
Measurements of Transverse Energy Flow in Deep-Inelastic Scattering at HERA
Measurements of transverse energy flow are presented for neutral current
deep-inelastic scattering events produced in positron-proton collisions at
HERA. The kinematic range covers squared momentum transfers Q^2 from 3.2 to
2,200 GeV^2, the Bjorken scaling variable x from 8.10^{-5} to 0.11 and the
hadronic mass W from 66 to 233 GeV. The transverse energy flow is measured in
the hadronic centre of mass frame and is studied as a function of Q^2, x, W and
pseudorapidity. A comparison is made with QCD based models. The behaviour of
the mean transverse energy in the central pseudorapidity region and an interval
corresponding to the photon fragmentation region are analysed as a function of
Q^2 and W.Comment: 26 pages, 8 figures, submitted to Eur. Phys.
Multiplicity Structure of the Hadronic Final State in Diffractive Deep-Inelastic Scattering at HERA
The multiplicity structure of the hadronic system X produced in
deep-inelastic processes at HERA of the type ep -> eXY, where Y is a hadronic
system with mass M_Y< 1.6 GeV and where the squared momentum transfer at the pY
vertex, t, is limited to |t|<1 GeV^2, is studied as a function of the invariant
mass M_X of the system X. Results are presented on multiplicity distributions
and multiplicity moments, rapidity spectra and forward-backward correlations in
the centre-of-mass system of X. The data are compared to results in e+e-
annihilation, fixed-target lepton-nucleon collisions, hadro-produced
diffractive final states and to non-diffractive hadron-hadron collisions. The
comparison suggests a production mechanism of virtual photon dissociation which
involves a mixture of partonic states and a significant gluon content. The data
are well described by a model, based on a QCD-Regge analysis of the diffractive
structure function, which assumes a large hard gluonic component of the
colourless exchange at low Q^2. A model with soft colour interactions is also
successful.Comment: 22 pages, 4 figures, submitted to Eur. Phys. J., error in first
submission - omitted bibliograph
Hadron Production in Diffractive Deep-Inelastic Scattering
Characteristics of hadron production in diffractive deep-inelastic
positron-proton scattering are studied using data collected in 1994 by the H1
experiment at HERA. The following distributions are measured in the
centre-of-mass frame of the photon dissociation system: the hadronic energy
flow, the Feynman-x (x_F) variable for charged particles, the squared
transverse momentum of charged particles (p_T^{*2}), and the mean p_T^{*2} as a
function of x_F. These distributions are compared with results in the gamma^* p
centre-of-mass frame from inclusive deep-inelastic scattering in the
fixed-target experiment EMC, and also with the predictions of several Monte
Carlo calculations. The data are consistent with a picture in which the
partonic structure of the diffractive exchange is dominated at low Q^2 by hard
gluons.Comment: 16 pages, 6 figures, submitted to Phys. Lett.
- …