1,193 research outputs found

    Michelson Interferometry with the Keck I Telescope

    Get PDF
    We report the first use of Michelson interferometry on the Keck I telescope for diffraction-limited imaging in the near infrared JHK and L bands. By using an aperture mask located close to the f/25 secondary, the 10 m Keck primary mirror was transformed into a separate-element, multiple aperture interferometer. This has allowed diffraction-limited imaging of a large number of bright astrophysical targets, including the geometrically complex dust envelopes around a number of evolved stars. The successful restoration of these images, with dynamic ranges in excess of 200:1, highlights the significant capabilities of sparse aperture imaging as compared with more conventional filled-pupil speckle imaging for the class of bright targets considered here. In particular the enhancement of the signal-to-noise ratio of the Fourier data, precipitated by the reduction in atmospheric noise, allows high fidelity imaging of complex sources with small numbers of short-exposure images relative to speckle. Multi-epoch measurements confirm the reliability of this imaging technique and our whole dataset provides a powerful demonstration of the capabilities of aperture masking methods when utilized with the current generation of large-aperture telescopes. The relationship between these new results and recent advances in interferometry and adaptive optics is briefly discussed.Comment: Accepted into Publications of the Astronomical Society of the Pacific. To appear in vol. 112. Paper contains 10 pages, 8 figure

    Integration of the atmospheric fluctuations in a dual-field optical interferometer: the short exposure regime

    Full text link
    Spatial phase-referencing in dual-field optical interferometry is reconsidered. Our analysis is based on the 2-sample variance of the differential phase between target and reference star. We show that averaging over time of the atmospheric effects depends on this 2-sample phase variance (Allan variance) rather than on the true variance. The proper expression for fringe smearing beyond the isoplanatic angle is derived. With simulations of atmospheric effects, based on a Paranal turbulence model, we show how the performances of a dual-field optical interferometer can be evaluated in a diagram 'separation angle' versus 'magnitude of faint object'. In this diagram, a domain with short exposure is found to be most useful for interferometry, with about the same magnitude limits in the H and K bands. With star counts from a Galaxy model, we evaluate the sky coverage for differential astrometry and detection of exoplanets, i.e. likelihood of faint reference stars in the vicinity of a bright target. With the 2mass survey, we evaluate sky coverage for phase-referencing, i.e. avaibility of a bright enough star for main delay tracking in the vicinity of any target direction.Comment: 9 pages, 8 figures, accepted for publication in A&

    Unifying gauge couplings at the string scale

    Get PDF
    Using the current precision electroweak data, we look for the minimal particle content which is necessary to add to the standard model in order to have a complete unification of gauge couplings and gravity at the weakly coupled heterotic string scale. We find that the addition of a vector-like fermion at an intermediate scale and a non-standard hypercharge normalization are in general sufficient to achieve this goal at two-loop level. Requiring the extra matter scale to be below the TeV scale, it is found that the addition of three vector-like fermion doublets with a mass around 700 GeV yields a perfect string-scale unification, provided that the affine levels are (kY,k2,k3)=(13/3,1,2)(k_Y, k_2 ,k_3)=(13/3, 1, 2) , as in the SU(5)×SU(5)SU(5) \times SU(5) string-GUT. Furthermore, if supersymmetry is broken at the unification scale, the Higgs mass is predicted in the range 125 GeV - 170 GeV, depending on the precise values of the top quark mass and tanβ\tan \beta parameter.Comment: 11 pages, 4 eps figures, using jpconf style, talk given at CORFU2005, RTN meeting ``The Quest for Unification: Theory Confronts Experiment'', 11 - 18 September 2005, Corfu, Greec

    T-Duality in 2-D Integrable Models

    Full text link
    The non-conformal analog of abelian T-duality transformations relating pairs of axial and vector integrable models from the non abelian affine Toda family is constructed and studied in detail.Comment: 14 pages, Latex, v.2 misprints corrected, reference added, to appear in J. Phys.

    Supersymmetric Quantum Corrections and Poisson-Lie T-Duality

    Full text link
    The quantum actions of the (4,4) supersymmetric non-linear sigma model and its dual in the Abelian case are constructed by using the background superfield method. The propagators of the quantum superfield and its dual and the gauge fixing actions of the original and dual (4,4) supersymmetric sigma models are determined. On the other hand, the BRST transformations are used to obtain the quantum dual action of the (4,4) supersymmetric non-linear sigma model in the sense of Poisson-Lie T-dualityComment: 18 page

    Supersymmetric String Waves

    Get PDF
    We present plane-wave-type solutions of the lowest order superstring effective action which have unbroken space-time supersymmetries. They describe dilaton, axion and gauge fields in a stringy generalization of the Brinkmann metric. Some conspiracy between the metric and the axion field is required. We show that there exists a special class of these solutions, for which α\alpha^\prime stringy corrections to the effective on-shell action, to the equations of motion (and therefore to the solutions themselves), and to the supersymmetry transformations vanish. We call these solutions supersymmetric string waves (SSW).Comment: 19 pages, LaTeX, SU-ITP-92-30 and UG-10/9

    Planet Formation Imager (PFI): Introduction and Technical Considerations

    Get PDF
    Complex non-linear and dynamic processes lie at the heart of the planet formation process. Through numerical simulation and basic observational constraints, the basics of planet formation are now coming into focus. High resolution imaging at a range of wavelengths will give us a glimpse into the past of our own solar system and enable a robust theoretical framework for predicting planetary system architectures around a range of stars surrounded by disks with a diversity of initial conditions. Only long-baseline interferometry can provide the needed angular resolution and wavelength coverage to reach these goals and from here we launch our planning efforts. The aim of the "Planet Formation Imager" (PFI) project is to develop the roadmap for the construction of a new near-/mid-infrared interferometric facility that will be optimized to unmask all the major stages of planet formation, from initial dust coagulation, gap formation, evolution of transition disks, mass accretion onto planetary embryos, and eventual disk dispersal. PFI will be able to detect the emission of the cooling, newly-formed planets themselves over the first 100 Myrs, opening up both spectral investigations and also providing a vibrant look into the early dynamical histories of planetary architectures. Here we introduce the Planet Formation Imager (PFI) Project (www.planetformationimager.org) and give initial thoughts on possible facility architectures and technical advances that will be needed to meet the challenging top-level science requirements.Comment: SPIE Astronomical Telescopes and Instrumentation conference, June 2014, Paper ID 9146-35, 10 pages, 2 Figure

    First Results from the CHARA Array. II. A Description of the Instrument

    Full text link
    The CHARA Array is a six 1-m telescope optical/IR interferometric array located on Mount Wilson California, designed and built by the Center for High Angular Resolution Astronomy of Georgia State University. In this paper we describe the main elements of the Array hardware and software control systems as well as the data reduction methods currently being used. Our plans for upgrades in the near future are also described

    Exact Models of Extremal Dyonic 4D Black Hole Solutions of Heterotic String Theory

    Full text link
    Families of exact (0,2)(0,2) supersymmetric conformal field theories of magnetically and electrically charged extremal 4D black hole solutions of heterotic string theory are presented. They are constructed using a (0,1)(0,1) supersymmetric SL(2,R)×SU(2)SL(2,R)\times SU(2) WZW model where anomalously embedded U(1)×U(1)U(1)\times U(1) subgroups are gauged. Crucial cancelations of the U(1)U(1) anomalies coming from the supersymmetric fermions, the current algebra fermions and the gauging ensure that there is a consistency of these models at the quantum level. Various 2D models, which may be considered as building blocks for extremal 4D constructions, are presented. They generalise the class of 2D models which might be obtained from gauging SL(2,R)SL(2,R) and coincide with known heterotic string backgrounds. The exact conformal field theory presented by Giddings, Polchinski and Strominger describing the angular sector of the extremal magnetically charged black hole is a special case of this construction. An example where the radial and angular theories are mixed non--trivially is studied in detail, resulting in an extremal dilatonic Taub--NUT--like dyon.Comment: 42 pages (Plain TEX), IASSNS-HEP-94/20 (Revised version has minor corrections, references and a note added and is now identical to published version in Phys Rev D.

    Solution--Generating Transformations and the String Effective Action

    Get PDF
    We study exhaustively the solution-generating transformations (dualities) that occur in the context of the low-energy effective action of superstring theory. We first consider target-space duality (``T duality'') transformations in absence of vector fields. We find that for one isometry the full duality group is (SO^{\uparrow}(1,1))^{3} x D_{4}, the discrete part (D_{4}) being non-Abelian. We, then, include non-Abelian Yang--Mills fields and find the corresponding generalization of the T duality transformations. We study the \alpha^{\prime} corrections to these transformations and show that the T duality rules considerably simplify if the gauge group is embedded in the holonomy group. Next, in the case in which there are Abelian vector fields, we consider the duality group that includes the transformation introduced by Sen that rotates among themselves components of the metric, axion and vector field. Finally we list the duality symmetries of the Type II theories with one isometry.Comment: latex file, 42 pages (less if you use optional commands) No changes at all. Resubmited due to mailer problem
    corecore