
ar
X

iv
:h

ep
-t

h/
95

06
15

6v
4 

 1
5 

Fe
b 

19
96

UG-1/95
QMW-PH-95-1

hep-th/9506156

SOLUTION–GENERATING TRANSFORMATIONS

AND THE STRING EFFECTIVE ACTION

Eric Bergshoeff1 and Bert Janssen2

Institute for Theoretical Physics, University of Groningen
Nijenborgh 4, 9747 AG Groningen, The Netherlands

Tomás Ort́ın3

Department of Physics, Queen Mary & Westfield College

Mile End Road, London E1 4NS, U.K.

Abstract

We study exhaustively the solution-generating transformations (du-
alities) that occur in the context of the low-energy effective action of
superstring theory.

We first consider target-space duality (“T duality”) transforma-
tions in absence of vector fields. We find that for one isometry the full
duality group is (SO↑(1, 1))3 × D4, the discrete part (D4) being non-
Abelian. We, then, include non-Abelian Yang–Mills fields and find
the corresponding generalization of the T duality transformations. We
study the α′ corrections to these transformations and show that the
T duality rules considerably simplify if the gauge group is embedded
in the holonomy group.

Next, in the case in which there are Abelian vector fields, we con-
sider the duality group that includes the transformation introduced by
Sen that rotates among themselves components of the metric, axion
and vector field.

Finally we list the duality symmetries of the Type II theories with
one isometry.
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Introduction

In recent years an active field of research has been the study of modified Ein-

stein equations. The modifications that have been considered consist in the
addition to pure gravity of extra scalars, antisymmetric tensor fields (called

dilatons and axions, respectively) and (Abelian or non-Abelian) Yang–Mills
fields. These modified Einstein equations admit special solutions whose con-

sistency crucially depends on the presence of the new fields. For examples of
such new solutions, see, for instance, the review articles Refs. [1, 2, 3, 4, 5]

and references therein.
One motivation for studying the above-mentioned modifications to Gen-

eral Relativity is that they arise in string theory. In string theory elementary
particles are described as the excitations of a string rather than as point-like

objects. The size of a string can be characterized by a dimensionful parame-

ter α′ (that can also be understood as the inverse of the string tension) in
such a way that, in the so-called zero-slope limit α′ → 0, an ordinary field

theory of point particles is obtained. This zero-slope limit of string theory
corresponds to a modified (or extended) Einstein theory of the type discussed

above. The complete effective action includes, at higher orders in α′, contri-
butions which are of higher order in the Riemann tensor and the Yang–Mills

field strength. Since string theory claims to give a consistent description
of quantum gravity, solutions of the string effective action are expected to

contribute to our understanding of quantum gravity.
Particularly interesting are solitonic and supersymmetric solutions [1, 4, 5]

to the low-energy effective field theory since, for different reasons, many of
them are expected to be not just exact solutions to the effective action to all

orders in α′, but exact solutions of string theory.
In general, it appears difficult to find exact solutions to the string equa-

tions of motion. One of the reasons for this is that knowledge about the

explicit form of the higher order α′ corrections to the string effective action
have become available only fairly recently [6]. Fortunately, if one considers

spacetimes with an isometry, there exist transformations which generate new
solutions out of old ones. We will refer to all these symmetries of the equa-

tions of motion as “dualities”.
The “target-space” (“T ”) duality transformations of the Type I super-

string effective action where first introduced in the bosonic σ–model context
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for general backgrounds with one isometry by Buscher in Refs. [7] (see Ref. [8]

for an updated review) as discrete (Z2) transformations that interchange cer-
tain components of the metric and axion fields. Later Roček and Verlinde [9]

proved that when the orbit of the isometry is closed, the backgrounds related
by Buscher’s transformation correspond to the same CFT.

This symmetry is also present in the zero-slope limit of the effective ac-
tion, and, in this context, (see Ref. [10] for a review with extensive references)

the classical T duality group was found to be the continuous O(1, 1)Sugra.
On the other hand, using string-field theory arguments, Sen found that

in presence of an additional Abelian vector field the duality symmetry was
bigger: O(1, 2; Z) [11]. At the level of the classical zero-slope effective ac-

tion, there is a continuous O(1, 2; R)Sugra T duality group. The increase in
symmetry is due to the fact that we now can interchange certain components

of the metric or axion fields with certain components of the Abelian vector
field. We will refer to this kind of transformations as “Sen transformations”.

The necessity of isometries strongly suggests the use of techniques of di-
mensional reduction and a close relationship between the duality symmetries

in the original dimensionality and the “hidden symmetries” of the dimen-

sionally reduced theory [12]. For supergravity theories the hidden symmetry
groups of most supergravity theories are well known [13] and this has been a

fruitful approach in the sense that the duality groups of many dimensionally
reduced theories have been found (see, for instance, Ref. [14] were this point

of view is advocated). However, the relation with the symmetries of the
“original” higher-dimensional theories has not always been carefully studied.

It is our purpose to do this here, for the simple case of a single isometry, dis-
tinguishing between those dualities which become simple general coordinate

transformations or gauge transformations in higher dimensions and those
which do not. We will combine this study with a thorough search for all dis-

crete and continuous duality transformations, relating them, when possible,
to symmetries of the σ-model or the Type II theories. We will consider three

cases: the (Type I) superstring effective action (i) in absence of vector fields,
(ii) in presence of non-Abelian Yang–Mills fields and (iii) in presence of a

single Abelian vector field.

Our main results are:

1. We find more (both discrete and continuous) duality symmetries. Since
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the situation in the literature is unclear, some of them were (perhaps)

known in different contexts and sometimes mistaken for each other. We
clarify the situation. In particular, we find that the T duality group

of the Type I theory with no vector fields is (SO↑(1, 1))3 × D4. The
appearance of this finite non-Abelian group (D4) is remarkable.

2. We generalize Buscher’s (discrete) transformation to the case in which
there are non-Abelian Yang–Mills fields present. Any solution of the

zero-slope heterotic string theory effective action with one isometry can
now be “T dualized”.

3. We present the α′ corrections to the generalized (discrete) Buscher’s
duality transformation and show that it becomes considerably simpler

if the gauge group is embedded in the holonomy group.

4. We give the explicit form in terms of the higher-dimensional theory

fields of the finite Sen transformation (one Abelian vector field present).

5. We list all the duality symmetries of the Type II theories (including
eleven-dimensional supergravity) and relate them with each other and

with global coordinate transformations of the higher-dimensional the-
ories, when possible.

6. In this respect, we remark the fact that Buscher’s discrete duality trans-
formation is an “unexpected” symmetry in the sense that it is not a

global coordinate transformation in higher dimensions4. Then, from
the higher-dimensional point of view, it is the only interesting solution-

generating transformation since all the other transformations are then
gauge transformations.

We would like to stress that we are not going to perform full-fledged
compactifications, in the sense that in an expansion of the fields in har-

monic functions of the compact dimension we will only keep the massless
modes, i.e. those with no dependence on the coordinate that parametrizes

4If Buscher’s discrete duality transformation corresponded to a global coordinate trans-
formation in higher dimensions, it would be a symmetry of all theories which are obtained
from a higher dimensional one through dimensional reduction, which is not true. Only
theories with the “right” field content have this symmetry.
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the compact dimension. The theories that we will obtain in this way will

effectively be lower-dimensional theories. We will refer to this procedure as
dimensional reduction, to distinguish it from (Kaluza-Klein) compactifica-

tion. Dimensional reduction, which has traditionally and successfully been
used in supersymmetry and supergravity as a method to obtain new theo-

ries and which has been used in many recent works on duality starting from
Ref. [12], will be enough for all of purposes.

As a matter of fact, we are ultimately interested in duality symmetries of
string theories. While effective actions contain some information about the

string massless modes, at least enough to determine their low-energy dynam-
ics, they do not contain much information about the massive modes. It would

not make any sense to study the Kaluza-Klein massive modes (whose origin
are the higher-dimensional massless modes) without including the original

string massive modes at the same time. Dimensional reduction of effective
actions is, then, not only the simplest approach, but, in general, the only

consistent approach from the low-energy point of view5.
On the other hand, we expect that all duality symmetries of superstring

theories will be duality symmetries of the effective field theories (supergravity

theories) [16]. Then, the study of the duality symmetries of effective actions
is the easiest way to discover those of the full string theory. In some cases,

like the Type II theories, where it is not known how to include the Ramond-
Ramond background fields in the σ-model, it is also the only available way

[17].
This being said, one should be aware that the effective theory does not

always give an adequate representation of the corresponding string theory,
particularly where non-perturbative in α′ effects occur [18], the results ob-

tained cannot be fully trusted and should be understood as indications but
never as proofs of the corresponding results in string theory. This is partic-

ularly important in the case of Buscher’s T duality transformation. It was
shown in Refs. [19, 20] that this transformation seems not to respect unbro-

ken spacetime supersymmetries. This surprising effect has been studied by
different authors [21, 22, 18] and the conclusion seems to be that Buscher’s

5The only exception to this conclusion might be eleven-dimensional supergravity, whose
Kaluza-Klein compactification on a circle seems to give the whole spectrum of Type IIA
superstring theory [15].
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duality transformation does not break spacetime supersymmetry and that

the usual representation of spacetime supersymmetry (and hence the usual
effective action) does not describe correctly the dynamics of string theory in

this limit.
The intrinsically stringy nature of this transformation as different from

the rest of the T duality group shows itself here. Since, as we will see, the
rest of the conventional O(1, 1)Sugra T duality group6 corresponds to global

coordinate reparametrizations in higher dimensions, it respects automatically
supersymmetry.

This article is organized as follows. In Section 1 we review the T duality
symmetries of the Type I theory in the absence of vector fields. Here we

dimensionally reduce the action in the isometry direction, and we look for
symmetries of the lower dimensional theory, as advocated in Refs. [12, 14].

The purpose of this section is to set up our notation and conventions, and
to thoroughly review the known results finding some new ones.

In Section 2 we use the technique of dimensional reduction to find the
generalization of the discrete (Buscher) T duality rules in the presence of

non-Abelian vector fields. We discuss the relation between our results and

the σ-model description of T duality.
In Section 3 we discuss how for the special case of an Abelian vector field

Sen’s solution-generating transformation emerges. In particular, we discuss
the connection between the Sen transformation at the one-hand-side and

special general coordinate plus gauge transformations at the other-hand-side.
Next, in Section 4 we study the α′ corrections to the discrete (Buscher’s)

T duality transformations. Appendices A and B contain respectively the
finite form of Sen’s duality transformations in D dimensions and a review

of analogous results in the Type II theories and in eleven-dimensional su-
pergravity. We also describe in this last Appendix the relation between the

duality transformations studied in the main body of the paper and global
coordinate transformations in higher dimensions.

6As we have already said, and we will show in the first section, the T duality group is
indeed bigger.
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1 T duality Without Vector Fields

In this section we review the T duality symmetries of the bosonic sector of

the zero-slope heterotic string effective action (which has the same form as
the bosonic string one). Therefore, there are no vector fields present. To

keep the discussion general we will work in D dimensions specifying later,
where necessary, to the case D = 10. Furthermore, for simplicity, we only

assume the existence of one isometry direction. The results presented have
an obvious generalization to the case of several commuting isometries.

The D–dimensional action we start from is, in the zero-slope limit, given
by

S
(D)
Sugra = 1

2

∫
dDx

√
−ĝ e−2φ̂

[
−R̂ + 4(∂φ̂)2 − 3

4
Ĥ2
]

, (1)

where the fields are the metric, the axion and the dilaton:

{
ĝµ̂ν̂ , B̂µ̂ν̂ , φ̂

}
, (2)

and our conventions are those of Ref. [20]. In particular, the axion field-

strength Ĥ is given by

Ĥµ̂ν̂ρ̂ = ∂[µ̂B̂ν̂ρ̂] . (3)

We are going to assume that all the backgrounds (solutions of this theory)

considered admit one isometry whose orbits can be parametrized by the
coordinate x, i.e. we assume that there exists a Killing vector k̂µ̂ such that

the Lie derivative of all fields with respect to k̂µ̂ is zero and such that

k̂µ̂∂µ̂ = ∂x . (4)

It is natural to use adapted coordinates7 (xµ, x) such that all fields are in-

dependent of the redundant coordinate x. Then, the space splits into a
(D − 1)-dimensional space parametrized by the coordinates xµ and an “in-

ternal” space parametrized by the coordinate x. In this internal space, by

7All the D–dimensional entities carry a hat and the (D − 1)-dimensional ones don’t,
and µ = 0, . . . , D − 2; x = xD−1. To distinguish between curved and flat indices, we
underline the curved ones (ξx, for instance).
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assumption, “nothing happens”, there is no dynamics, since the fields are in-

dependent of x. The theory is effectively (D−1)-dimensional, and therefore,
following the point of view advocated in Ref. [12], we will reduce dimension-

ally the action Eq. (1) to find the corresponding effective action.
First of all, in this coordinate system, the components of the Killing

vector are

k̂µ̂ = δµ̂x , k̂µ̂ = ĝµ̂x , k̂µ̂k̂µ̂ = ĝxx . (5)

The zero-slope limit Buscher’s T duality rules were originally derived

using the two-dimensional σ-model approach in Refs. [7]. The explicit form
of these transformations is:

˜̂gµν = ĝµν − (ĝxµĝxν − B̂xµB̂xν)/ĝxx ,

˜̂
Bµν = B̂µν + (ĝxµB̂νx − ĝxνB̂µx)/ĝxx ,

˜̂gxµ = B̂xµ/ĝxx ,
˜̂
Bxµ = ĝxµ/ĝxx,

˜̂gxx = 1/ĝxx ,
˜̂
φ = φ̂ − 1

2
log |ĝxx| .

(6)

The transformations Eqs. (6) also leave the zero-slope limit action S
(D)
Sugra,

given in Eq. (1), invariant in the sense that

S
(D)
Sugra(

˜̂g,
˜̂
B,

˜̂
φ) = S

(D)
Sugra(ĝ, B̂, φ̂) +

∫
dDx A(ĝ, B̂, φ̂)∂xB(ĝ, B̂, φ̂) , (7)

where A and B are some expressions in terms of ĝ, B̂ and φ̂. This property

shows that target-space duality is indeed a symmetry of the equations of

motion (to this order in α′) and therefore a solution-generating transforma-
tion: if a configuration, independent of x, is a solution of the zero-slope limit

equations of motion, then the dual configuration is also a solution.
A few remarks are in order

• The duality transformations (6) are only well-defined if ĝxx 6= 0. This

is guaranteed by the condition that the Killing vector k̂ is non-null.
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For simplicity we consider from now on only the space-like case. It

is not difficult to generalize the formulae to the general case. It is
remarkable that it is precisely the restriction of the Killing vector to

be non-null that allows us to perform dimensional reduction in that
direction. Things are radically different in the null case, and we do not

know which kind of “null duality symmetries”, if any, exist. Recently,
the dimensional reduction of the Einstein theory in a null direction has

been studied in Ref. [23], but it is not clear yet whether their results
can be applied to our problem since in our case the existence of a null

Killing vector is not enough to prove that the integrability condition
Rvv = 0 (v is the corresponding null coordinate), on which their results

are based, always holds.

• For the special case in which the configuration is given by the product of

a (D−1)-dimensional Minkowski space times a circle we have that ĝxx ∼
R, where R is the radius of the torus, and the duality transformation

corresponds to the well-known transformation R → 1/R [24].

• The dual of the dual gives back the original configuration. Therefore,
this duality transformation, that we will call from now on B, generates

a Z
(B)
2 symmetry group.

• We are after symmetries of the equations of motion8, and, therefore,

we will consider as good symmetries transformations that, instead of
leaving invariant the action, as B, scale it.

To show that Equation (7) holds, it is convenient to use a supergravity
interpretation of duality via dimensional reduction [12]. We use the standard

techniques of Scherk and Schwarz in Refs. [25]. Thus, the D–dimensional
fields decompose as follows:

8From the point of view of string theory, the only meaning of the effective action (when
it exists) is that the conditions for the vanishing of the beta functionals can be derived
from its minimization. From the supergravity point of view, the action is meaningful and
a good symmetry of the theory will always leave the action invariant.
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ĝµν = gµν − k2AµAν , B̂µν = Bµν + A[µBν] ,

ĝxµ = −k2Aµ , B̂xµ = Bµ ,

ĝxx = −k2 , φ̂ = φ + 1
2
log k ,

(8)

where

{gµν , Bµν , φ, Aµ, Bµ, k} , (9)

are the (D − 1)-dimensional fields and we have used the notation

k = |k̂µ̂k̂
µ̂| 12 . (10)

Observe that k̂µ̂k̂
µ̂ = ĝxx = −k2. Similarly, the (D − 1)-dimensional fields

are given in terms of the D–dimensional fields by

gµν = ĝµν − ĝxµĝxν/ĝxx , Bµ = B̂xµ ,

Bµν = B̂µν + ĝx[µB̂ν]x/ĝxx , φ = φ̂ − 1
4
log |ĝxx| ,

Aµ = ĝxµ/ĝxx , k = |ĝxx|
1
2 .

(11)

Ignoring the integral over x, the D–dimensional action Eq. (1) is identi-
cally equal to9

S
(D−1)
Sugra(red) = 1

2

∫
d(D−1)x

√−g e−2φ
[
−R + 4(∂φ)2 − 3

4
H2

−(∂ log k)2 + 1
4
k2F 2(A) + 1

4
k−2F 2(B)

]
, (12)

where

9Dropping the integral over x is consistent with our dimensional reduction philosophy.
However, when global transformations of this coordinate are involved, we will find that
the lower-dimensional action scales while the higher-dimensional action is invariant. In
both dimensions the equations of motion are invariant.
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Fµν(A) = 2∂[µAν] , Fµν(B) = 2∂[µBν] ,

Hµνρ = ∂[µBνρ] +
1
2
A[µFνρ](B) + 1

2
B[µFνρ](A) . (13)

The action Eq. (12) can be interpreted as a (D − 1)-dimensional action

for the above (D−1)-dimensional fields. It is known since the old supergrav-
ity days [13, 26] that this action is invariant under the rigid non-compact

(“supergravity”) symmetry group

O(1, 1)Sugra = SO↑(1, 1)Sugra × Z
(B)
2 × Z

(S)
2 . (14)

SO↑(1, 1) is the part of O(1, 1) connected with the identity, and Z
(B)
2 × Z

(S)
2

is its mapping class group. The first of the discrete symmetries, Z
(B)
2 , is

generated by the transformation that we denote by B:

Ãµ = Bµ , B̃µ = Aµ , k̃2 = k−2 , (15)

while the other fields are invariant. In D dimensions these rules correspond to
Buscher’s duality rules Eqs. (6) (hence the name). The second Z2 symmetry

is generated by the transformation

A′
µ = −Aµ , B′

µ = −Bµ , (16)

that we denote by S. On the other hand, the SO↑(1, 1)Sugra transformation

(with continuous rigid parameter α)10 is a scaling of the fields with difer-
ent powers (“weights”) of the factor eα. The weights in nine dimensions

(i.e. when we take D = 10) are given in Table 1.
As it is explained in Appendix B, and following the classical reasoning of

Ref. [13], since the action above was obtained by dimensional reduction of the

coordinate x, one would generally expect an SO(1, 1) T duality group of re-
scalings and reflections of the compact coordinate x′ = eαx, x′ = −x. This is

exactly the origin of SO↑(1, 1)Sugra×Z
(S)
2 , and an analogous global symmetry

is expected in any theory which can be obtained from (one)-dimensional

10The parameter α takes values in R. Therefore, SO↑(1, 1) is isomorphic to the multi-

plicative group R
+

or to the additive group R.
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Name gµν Bµν Aµ Bµ eφ k S
(9)
Sugra(red)

SO↑(1, 1)Sugra 0 0 1 -1 0 -1 0

SO↑(1, 1)x−y 1 1 1 0 7
4

−1
2

0

SO↑(1, 1)string 0 0 0 0 1 0 -2

Table 1: Weights of the heterotic fields under the two SO↑(1, 1) symmetries

of the action S
(9)
Sugra(red) and the third SO↑(1, 1) which scales it in nine dimen-

sions (so taking D = 10).

reduction of another theory. It will come as no surprise that in all the cases
considered in the following sections this duality group is always present and

we will not mention its origin again. On the other hand, the presence of

the second Z
(B)
2 is completely unexpected (for instance, it is not present in

Type II actions as explained in Ref. [17]) and ultimately related to the stringy

origin of the action we started with.
In addition to these well-known symmetries, there is another SO↑(1, 1)x−y

scaling transformation and a discrete Z
(A)
2 transformation that leave the ac-

tion invariant. The weights of the fields under the SO↑(1, 1)x−y scaling in
nine dimensions are given in the second row in Table 1.

The Z
(A)
2 symmetry group is generated by the transformation that we call

A

Bµν → −Bµν , Bµ → −Bµ . (17)

One may naively think that the total symmetry group is just SO↑(1, 1)Sugra×
SO↑(1, 1)x−y × Z

(B)
2 × Z

(S)
2 × Z

(A)
2 . However, a careful analysis shows that

the actual symmetry group is

SO↑(1, 1)Sugra × SO↑(1, 1)x−y × D4 . (18)

11



where D4 is the symmetry group of rotations of a square with undirected

sides, which has two generators b, c that obey 11 c4 = b2 = (bc)2 = 1. In our
case the generators are b = B (Buscher’s duality transformation Eq. (6)) and

the order four element c = AB (the A is given by Eq. (17)). Note that A
and B do not commute.

Finally we note that there is an additional SO↑(1, 1)string scaling trans-
formation (“string”) which is a symmetry of the equations of motion but not

of the action, which scales under it. The non-zero scaling weights in nine
dimensions are given in the last line of Table 1.

We conclude that the full group of global symmetries of the equations of
motion is

SO↑(1, 1)Sugra × SO↑(1, 1)x−y × SO↑(1, 1)string × D4 . (19)

The whole symmetry group (except for the B transformation) can be
understood from a higher dimensional point of view and from the Type II

theories point of view. This is discussed in Appendix B. Also, all the trans-
formations in the discrete part of the symmetry group D4 can be under-

stood from the σ-model with a D-dimensional target-space point of view.

In particular, the transformation A consists in the change of sign of the D-
dimensional axion (B̂µ̂ν̂ → −B̂µ̂ν̂) plus the interchange between right-movers

and left-movers z ⇀↽ z.

2 Duality In Presence Of Non-Abelian Vec-

tor Fields

Since our ultimate goal is to study the duality symmetries of the full het-

erotic string effective action, it is natural to study, as an intermediate step,
the effect of the addition of non-Abelian vector fields on the duality symme-

tries found in the previous section. Then, our starting point is the so-called
“Sugra+YM” action:

11See for instance Ref. [27] where a representation in terms of two-dimensional matrices
is given in page 25.
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S
(D)
Sugra+YM = 1

2

∫
dDx

√
−ĝ e−2φ̂

[
−R̂ + 4(∂φ̂)2 − 3

4
Ĥ2 + 1

4g2 F̂
I
µ̂ν̂F̂

µ̂ν̂
I

]
, (20)

in terms of the fields

{
ĝµ̂ν̂ , B̂µ̂ν̂ , V̂

I
µ̂ , φ̂

}
, (21)

which, in the case D = 10 corresponds to the bosonic sector of N = 1, D = 10

supergravity coupled to Yang–Mills and is interesting by itself. Here F̂ I is the
curvature of the Yang–Mills vector field V̂ I , I is a Yang–Mills index (which

we raise and lower with δIJ) and g is the coupling constant. Ĥ contains now
a Yang–Mills Chern–Simons term:

F̂ I
µ̂ν̂(V̂ ) = 2∂[µ̂V̂

I
ν̂] − fKL

I V̂ K
µ̂ V̂ L

ν̂ ,

Ĥµ̂ν̂ρ̂ = ∂[µ̂B̂ν̂ρ̂] − 1
2g2

[
V̂ I

[µ̂F̂ν̂ρ̂]I(V̂ ) + 1
3
fIJKV̂ I

[µ̂V̂
J
ν̂ V̂ K

ρ̂]

]
. (22)

In principle, there is an ambiguity in the relative sign between ∂B̂ and
the Yang–Mills Chern–Simons term. In fact, there are two theories whose

only difference is this relative sign and which are related by the change of

sign of B̂µ̂ν̂ (Z
(A)
2 ) which is no longer a symmetry of each separate theory.

We, therefore, anticipate that the group D4 is broken to Z
(B)
2 × Z

(S)
2 in each

theory. In fact Z
(A)
2 is a duality transformation that brings us from one theory

to the other, exactly as happens in the Type II duality of Ref. [17]. From
the σ-model point of view, these theories are related by a change of the sign

of B̂µ̂ν̂ and the simultaneous interchange of left- and right-movers. For the
sake of definiteness, we will work with the above choice of relative sign.

Following the standard procedure for dimensional reduction [25] (see also
Section 1) we get in the (D− 1)-dimensional theory one graviton, one axion,

two Abelian vector fields, one non-Abelian vector field, the dilaton, a scalar
and a set of additional scalars that transform in the adjoint representation

of the Yang–Mills group:

{
gµν , Bµν , Aµ, Bµ, V I

µ , φ, k, ℓI
}

. (23)
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These fields are related to the D–dimensional fields by

gµν = ĝµν − ĝxµĝxν/ĝxx ,

Bµν = B̂µν + ĝx[µB̂ν]x/ĝxx − 1
2g2 V̂

I
x ĝx[µV̂ν]I/ĝxx ,

V I
µ = V̂ I

µ − V̂ I
x ĝxµ/ĝxx , Aµ = ĝxµ/ĝxx ,

Bµ = B̂xµ − 1
2g2 V̂

I
x V̂µI + 1

2g2 V̂
I
x V̂xI ĝxµ/ĝxx ,

φ = φ̂ − 1
4
log |ĝxx| , k = |ĝxx|

1
2 , ℓI = 1

g
V̂ I

x . (24)

The D–dimensional fields decompose into the (D − 1)-dimensional ones as

follows:

ĝµν = gµν − k2AµAν , B̂µν = Bµν + A[µBν] +
1
g
ℓIA[µVν]I ,

ĝxµ = −k2Aµ , B̂xµ = Bµ + 1
2g

ℓIVµI ,

ĝxx = −k2 , φ̂ = φ + 1
2
log k ,

V̂ I
x = g ℓI , V̂ I

µ = V I
µ + g ℓIAµ .

(25)

The (D−1)-dimensional vector fields and two-form are defined in such a way
that they transform in a standard way specified below under the (infinitesi-

mal) gauge symmetries that they inherit from the D–dimensional fields:

1. x-independent reparametrizations x′ = x − ξ(xµ):

δĝµν = 2ĝx(µ∂ν)ξ , δB̂µν = −2B̂x[µ∂ν]ξ ,

δĝµx = ĝxx∂µξ , δV̂ I
µ = V̂ I

x ∂µξ ,

(26)

14



2. x–independent gauge transformations of the axion field:

δB̂µ̂ν̂ = 2∂[µ̂Σ̂ν̂] , (27)

3. x–independent gauge transformations of the Yang–Mills field (accom-
panied by a Nicolai–Townsend (N–T) transformation of the axion two-

form)

δV̂ I
µ̂ = ∂µ̂ΛI + fJK

IΛJ V̂ K
µ̂ ,

δB̂µ̂ν̂ = 1
g2 V̂

I
[µ̂∂ν̂]ΛI . (28)

These three gauge symmetries correspond to the following four gauge

symmetries of the (D − 1)-dimensional fields:

1. Gauge transformations of the vector field Aµ (plus N–T transformation

of the axion two-form):

δAµ = ∂µξ ,

δBµν = −B[µ∂ν]ξ , (29)

2. Gauge transformations of the axion field

δBµν = 2∂[µΣν] (30)

where Σµ = Σ̂µ,

3. Gauge transformations of the vector field Bµ (plus a N–T transforma-

tion)
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δBµ = ∂µΣ ,

δBµν = −A[µ∂ν]Σ , (31)

where Σ = −Σ̂x,

4. Gauge transformation of the vector field Vµ (plus a N–T transforma-
tion)

δV I
µ = ∂µΛI + fJK

IΛJV K
µ ,

δBµν = 1
g2 V

I
[µ∂ν]ΛI . (32)

The gauge–invariant (D−1)-dimensional vector and axion field strengths

are, accordingly

Fµν(A) = 2∂[µAν] , Fµν(B) = 2∂[µBν] ,

F I
µν(V ) = 2∂[µV

I
ν] − fJK

IV J
µ V K

ν ,

Hµνρ = ∂[µBνρ] +
1
2
A[µFνρ](B) + 1

2
B[µFνρ](A)

− 1
2g2

[
V I

[µFνρ]I(V ) + 1
3
fIJKV I

[µV
J
ν V K

ρ]

]
. (33)

The dimensionally reduced action is given by

S
(D−1)
Sugra+YM(red) = 1

2

∫
d(D−1)x

√−g e−2φ

{
− R + 4(∂φ)2 − 3

4
H2

+ 1
4g2

(
k2 + ℓ2

k2

)
Tr F 2(V ) −

[
(∂ log k)2 +

1

2k2
(Dℓ)2

]
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Name gµν Bµν Aµ Bµ eφ k ℓ Vµ 1/g2 S(9)

SO↑(1, 1)Sugra 0 0 1 -1 0 -1 -1 0 0 0

SO↑(1, 1)x−y 1 1 1 0 7
4

−1
2

−1
2

0 1 0

SO↑(1, 1)string 0 0 0 0 1 0 0 0 0 -2

Table 2: Weights of the Sugra+YM fields under the two SO↑(1, 1) (pseudo-)

duality symmetries of the action S
(9)
Sugra+YM(red) and the third SO↑(1, 1) which

scales it in D = 9.

+1
4

[
(2k2 + ℓ2)2

4k2
F 2(A) + k−2F 2(B) +

ℓ2

k2
F (A)F (B)

]

+1
g
F I(V )

[
ℓI

(
2k2 + ℓ2

4k2

)
F (A) +

ℓI

2k2
F (B)

]}
, (34)

where ℓ2 ≡ ℓIℓI , (Dℓ)2 ≡ DµℓIDµℓI and the covariant derivative Dµℓ
I is

defined by

Dµℓ
I = ∂µℓ

I + fJK
IℓJV K

µ . (35)

As happened in the previous section, the action is invariant under a rigid
SO↑(1, 1)Sugra× Z

(B)
2 × Z

(S)
2 symmetry. The continuous SO↑(1, 1)Sugra trans-

formations are scalings and the weights of the fields in nine dimensions are
given in Table 2.

The action of the discrete B transformation that generates the first Z
(B)
2

is

Ãµ = Bµ , B̃µ = Aµ ,

k̃2 = 4k2

(ℓ2+2k2)2
, ℓ̃I = 2ℓI

ℓ2+2k2

(36)
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and the action of the transformation S which generates Z
(S)
2 is

A′
µ = −Aµ , B′

µ = −Bµ ,

ℓI′ = −ℓI .
(37)

If one allows for transformations of the coupling constant g (pseudo-

dualities [28]) the SO↑(1, 1)x−y symmetry of the action found in the previous

section can be promoted to a symmetry in the presence of Yang–Mills fields.
The weights are given in the second row of Table 2 for nine dimensions. Fi-

nally, the SO↑(1, 1)string trivially extends to this case. In consequence the full
symmetry group of the equations of motion is

SO↑(1, 1)Sugra × SO↑(1, 1)x−y × SO↑(1, 1)string × Z
(B)
2 × Z

(S)
2 . (38)

We see that the non-Abelian discrete group D4 from the previous section

indeed breaks into the Abelian group Z
(B)
2 × Z

(S)
2 , as mentioned above, due

to the presence of the Yang–Mills Chern–Simons term in the axion field

strength.
In D dimensions the transformation B corresponds to the following genera-

lization of Buscher’s T duality rules12:

˜̂gµν = ĝµν +
[
ĝxxĜxµĜxν − 2ĜxxĜx(µĝν)x

]
/Ĝ2

xx ,

˜̂
Bµν = B̂µν − Ĝx[µĜν]x/Ĝxx ,

˜̂gxµ = −ĝxµ/Ĝxx + ĝxxĜxµ/Ĝ
2
xx ,

˜̂
Bxµ = −B̂xµ/Ĝxx + Ĝxµ/Ĝxx ,

˜̂gxx = ĝxx/Ĝ
2
xx ,

˜̂
φ = φ̂ − 1

2
log |Ĝxx| ,

˜̂
V

I

x = −V̂ I
x /Ĝxx ,

˜̂
V

I

µ = V̂ I
µ − V̂ I

x Ĝxµ/Ĝxx ,
(39)

with

12The analogous result for Abelian vector fields was first given in Refs. [29, 30]
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Ĝµ̂ν̂ = ĝµ̂ν̂ + B̂µ̂ν̂ − 1
2g2 V̂

I
µ̂ V̂ν̂I . (40)

These are the duality rules of the theory corresponding to the choice of

sign in Eq. (22). Since the theory corresponding to the other choice can be
obtained by performing an A transformation (B̂µ̂ν̂ → −B̂µ̂ν̂), its duality rules

can be also obtained by performing an A transformation in the above rules.
Note that the factor

√
−ĝ e−2φ̂ which occurs as an overall factor in the D–

dimensional Lagrangian is invariant under this set of transformations, since
the determinant of the metric transforms as follows:

√
−˜̂g = Ĝ−1

xx

√
−ĝ . (41)

Finally, it is remarkable that the duality rules of Ĝµ̂ν̂ are of the following

particular simple form:

˜̂
Gµν = Ĝµν − ĜxµĜνx/Ĝxx ,

˜̂
Gxx = 1/Ĝxx ,

˜̂
Gxµ = +Ĝxµ/Ĝxx ,

˜̂
Gµx = −Ĝµx/Ĝxx .

(42)

3 Duality In Presence Of One Abelian Vector

Field

A particularly interesting case of the action considered in the previous section
is the one in which the gauge group is (U(1))n, because new duality transfor-

mations that interchange components of the metric or axion with components
of the Abelian vector fields are now possible13. It is known that, as a conse-

quence, the O(1, 1)Sugra duality group of Section 2 becomes O(1, n + 1)Sugra

[30, 29, 26]. The symmetries SO↑(1, 1)x−y × SO↑(1, 1)string do not extend to

larger symmetry groups and remain as in the previous section.

We are only going to consider the case n = 1 since it is the simplest and
shows all the interesting features.

13The Abelian case is obtained by first rescaling V → gV and then putting all struc-
ture constants equal to zero. Observe that after this rescaling, the weight of V under
SO↑(1, 1)x−y becomes 1

2
and the “pseudo-duality” becomes a duality.
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The (D−1)-dimensional action is again given by Eq. (34), specified to the

Abelian case. This action can be rewritten into the following form, presented
in Refs. [12, 26], which makes the O(1, 2)Sugra–invariance manifest :

S
(D−1)
Sugra+U(1) = 1

2

∫
d(D−1)x

√−g e−2φ
{
−R + 4(∂φ)2 − 3

4
H2

+1
8
Tr

(
∂µM

−1∂µM
)
− 1

4
F i

µν(A)Fµν
i (A)

}
, (43)

where

Ai
µ =




Aµ

Bµ

Vµ


 , F i

µν(A) = ∂µAi
ν − ∂νAi

µ ,

(44)

Fµνi = M−1
ij F j

µν , i = 1, 2, 3

and

M−1
ij =




−(2k2 + ℓ2)2/4k2 −ℓ2/2k2 −(2k2ℓ + ℓ3)/2k2

−ℓ2/2k2 −1/k2 −ℓ/k2

−(2k2ℓ + ℓ3)/2k2 −ℓ/k2 −(k2 + ℓ2)/k2




. (45)

The explictly O(1, 2)Sugra–invariant axion field-strength can be written as

Hµνρ = ∂[µBνρ] + 1
2
Ai

[µF j
νρ](A)ηij , (46)

where η is the O(1, 2) metric in an off-diagonal basis:

ηij = ηij =




0 1 0
1 0 0
0 0 −1


 . (47)

Note that the matrix M−1
ij itself is an O(1, 2) matrix since it leaves in-

variant the metric η
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(M−1)T ηM−1 = η . (48)

Under an O(1, 2)Sugra transformation Ω the vectors and scalars transform

in this way [12]:

A′
µ = ΩAµ , (M−1)′ = ΩM−1ΩT . (49)

Let us now consider the explicit form of the O(1, 2)Sugra transformations

in more detail. First of all, O(1, 2)Sugra = SO↑(1, 2)Sugra × Z
(B)
2 × Z

(S)
2 . The

Z
(B)
2 × Z

(S)
2 transformations are again given by Eqs. (36,37), specified to

the Abelian case. The Z
(B)
2 leads to the generalized Buscher’s rules given in

Eqs. (39). We next consider the continuous SO↑(1, 2)Sugra transformations.

It is convenient to first consider the so(1, 2) Lie algebra with generators J1, J2

and J3:

[J1, J2] = J3 , [J2, J3] = −J1 , [J3, J1] = J2 . (50)

In a 3 × 3-matrix representation they satisfy the symmetry property:

(Jiη)T = −(Jiη) , i = 1, 2, 3 . (51)

In the off-diagonal basis Eq. (47) the generators Ji are represented by the
following 3 × 3 matrices14:

J1 = 1√
2




0 0 −1
0 0 1
1 −1 0


 , J2 = 1√

2




0 0 −1
0 0 −1
−1 −1 0


 ,

(52)

J3 =




1 0 0
0 −1 0
0 0 0


 .

In terms of

J+ = (J2 + J1)/
√

2 , J− = (J2 − J1)/
√

2 , (53)

14 Note that J1, J3 generate so(1, 1) subalgebras while J2 generates an so(2) subalgebra.
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we have the following commutation relations:

[J3, J+] = J+ , [J3, J−] = −J− , [J+, J−] = J3 . (54)

The exponentiation of J3, J+ and J− leads to the following SO↑(1, 2)
group elements:

exp αJ3 =




eα 0 0
0 e−α 0
0 0 1


 ,

exp βJ− =




1 0 0
1
2
β2 1 −β
−β 0 1


 , (55)

exp γJ+ =




1 1
2
γ2 −γ

0 1 0
0 −γ 1


 .

An arbitrary SO↑(1, 2) group element can be written as the product of
these basis elements. Using Eqs. (49) one can verify that the transformations

in the basis above induce the following transformations in D−1 dimensions.
First of all, the transformation generated by J3 in D − 1 dimensions is just

the SO↑(1, 1)Sugra transformation of previous sections. We next consider the
transformation generated by J−. The (D−1)-dimensional rules are given by

A′
µ = Aµ , (k2)′ = k2 ,

B′
µ = Bµ − βVµ + 1

2
β2Aµ , ℓ′ = ℓ + β ,

V ′
µ = Vµ − βAµ .

(56)

The corresponding transformation of the D–dimensional fields is

V̂ ′
x = V̂x + β ,

B̂′
xµ = B̂xµ − 1

2
βV̂µ . (57)
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All other fields are invariant. It turns out that this transformation is a special

finite U(1) gauge transformation accompanied of a N–T transformation

V̂ ′
µ̂ = V̂µ̂ + ∂µ̂Λ ,

B̂′
µ̂ν̂ = B̂µ̂ν̂ + V̂[µ̂∂ν̂]Λ , (58)

with the parameter Λ given by Λ = βx [11].

Finally, we consider the transformation generated by J+ . This is the
solution-generating transformation which was first introduced by Sen [11].

The rules in D − 1 dimensions are given by

A′
µ = Aµ + 1

2
γ2Bµ − γVµ , (k2)′ =

(
4k

4+4γℓ+(ℓ2+2k2)γ2

)2
,

B′
µ = Bµ , ℓ′ = 4ℓ+2(ℓ2+2k2)γ

4+4γℓ+(ℓ2+2k2)γ2 ,

V ′
µ = −γBµ + Vµ .

(59)

This transformation does not correspond to any gauge transformation in D

dimensions. Indeed, as we have seen, from the entire group O(1, 2)Sugra, only
this transformation and Buscher’s (B) are non-trivial solution generating

transformations. They correspond to the subgroup O(1) × O(2), while the
other transformations belong to the coset O(1, 2)Sugra/(O(1)×O(2)) of pure

gauge transformations [11].
It is instructive to also consider the infinitesimal form of the SO↑(1, 2)

transformations in D − 1 dimensions:

δAµ = αAµ − γVµ ,

δBµ = −αBµ − βVµ ,

δVµ = −βAµ − γBµ ,
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δk2 = −2αk2 − 2γℓk2 ,

δℓ = −αℓ + β − 1
2
γ(ℓ2 − 2k2) . (60)

These infinitesimal rules lead to the commutation relations of the so(1, 2)

algebra:

[δα, δβ] = δβ′ with β ′ = αβ ,

[δα, δγ] = δγ′ with γ′ = −αγ , (61)

[δβ, δγ] = δα′ with α′ = γβ .

One may verify that the action (34) is indeed left invariant by the infinitesimal
transformations given above.

The rules of transformation of the scalars k2 and ℓ are complicated and
they lead to even more complicated rules for the D–dimensional fields that

are given in Appendix A. They considerably simplify if we assume that V̂µ =
V̂x = 015. In that case they are given by

15The J+–transformation is often used to construct a charged solution (V̂ ′ 6= 0) out of an
uncharged one (V̂ = 0). Therefore, most times it is enough to know the J+–transformation
for the case that V̂µ = V̂x = 0.
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ĝ′
µν = ĝµν − ĝxµĝxν

ĝxx
+

4ĝxx

(2−γ2 ĝxx)2

(
ĝxµ

ĝxx
+ 1

2
γ2B̂xµ

)(
ĝxν

ĝxx
+ 1

2
γ2B̂xν

)
,

B̂′
µν = B̂µν + 2γ2 ĝx[µB̂xν]

2−γ2ĝxx
, B̂′

xµ =
2B̂xµ

2−γ2ĝxx
,

ĝ′
xµ =

4ĝxx

(2−γ2 ĝxx)2

(
ĝxµ

ĝxx
+ 1

2
γ2B̂xµ

)
, ĝ′

xx =
4ĝxx

(2−γ2 ĝxx)2
,

V̂ ′
µ = −γB̂xµ − 2γ

ĝxx

2−γ2ĝxx

(
ĝxµ

ĝxx
+ 1

2
γ2B̂xµ

)
,

V̂ ′
x = −2γ

ĝxx

2−γ2 ĝxx
, φ̂′ = φ̂ + 1

2
log 2

2−γ2ĝxx
.

(62)

The above formulae have been given in Eq. (2.12) of Ref. [2] for the special

case that ĝxµ = B̂xµ = 0. In that case the fields ĝxµ, B̂xµ and V̂µ remain zero

after the Sen transformation; ĝµν and B̂µν remain invariant while the other
fields transform as follows:

ĝ′
xx =

4ĝxx

(2 − γ2ĝxx)2
,

V̂ ′
x = −2γ

ĝxx

2 − γ2ĝxx

, (63)

φ̂′ = φ̂ + 1
2
log

2

2 − γ2ĝxx

.

These formulae differ from Eq. (2.12) of [2]. To obtain the formula of Ref. [2]
(with parameter αH) one should perform successively an α, β and γ trans-

formation with parameters16

α = 2log cosh αH β = −i
√

2
sinh αH

cosh3 αH

γ = i
√

2tanh αH . (64)

16Note that the normalization of the vector field Vµ in [2] differs from ours with a factor
of 2i.
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Finally, the infinitesimal form of the SO↑(1, 2) tranformations in D di-

mensions is given by:

δĝxx = −2αĝxx − 2γV̂xĝxx ,

δĝxµ = −αĝxµ − γ
(
V̂µĝxx + V̂xĝxµ

)
,

δĝµν = −2γV̂(µĝxν) ,

δB̂xµ = −αB̂xµ − 1
2
βV̂µ − 1

2
γ
(
V̂xB̂xµ − ĝxµV̂x + ĝxxV̂µ

)
,

δB̂µν = −γ
(
V̂[µB̂xν] + ĝx[µV̂ν]

)
, (65)

δV̂x = −αV̂x + β − γ
(
gxx + 1

2
V̂ 2

x

)
,

δV̂µ = −γ
(
ĝxµ + B̂xµ + 1

2
V̂xV̂µ

)
,

δφ̂ = −1
2
α − 1

2
γV̂x .

As in the (D − 1)-dimensional case (see above) these infinitesimal rules lead
to the commutation relations of the so(1, 2) algebra given in (62).

To conclude we give the full symmetry group of the equations of motion:

SO↑(1, 2)Sugra × SO↑(1, 1)x−y × SO↑(1, 1)string × Z
(B)
2 × Z

(S)
2 . (66)

4 α′ Corrections

In the first section we considered the zero-slope limit of the bosonic sector

heterotic string effective action and in the following sections we have added
Yang–Mills fields to it. This is consistent from the supergravity point of view.

However, from the heterotic string theory point of view, the Yang–Mills term
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is already first order in α′ and, strictly speaking, one has to add to the action

all the other terms linear in α′. Therefore, to this order, the action that we
have to consider is [6]

S
(D)
Sugra+α′ = 1

2

∫
dDx

√
−ĝ e−2φ̂

{
−R̂ + 4(∂φ̂)2 − 3

4
(Ĥ(1))2

+ 1
4

[
βTr F̂ 2

(
V̂
)

+ αTr R̂2
(
Ω̂(0)

)]}
, (67)

Here Ĥ(1) is the axion field strength up to linear order in α′

Ĥ(1) = Ĥ(0) −
(
βω̂Y M + αω̂(0)L

)
, (68)

Ĥ(0) is the zero order in α′ axion field strength, ω̂Y M is the Yang–Mills Chern–

Simons form and ω̂(0)L is the (zero order in α′) Lorentz Chern–Simons form.
They are respectively given by17

Ĥ(0) = ∂B̂ ,

ω̂Y M = 1
2
V̂ IF̂I

(
V̂
)

+ 1
6
fIJKV̂ I V̂ J V̂ K , (69)

ω̂(0)L = 1
2
Ω̂(0)âb̂R̂âb̂

(
Ω̂(0)

)
+ 1

3
Ω̂(0)âb̂ Ω̂(0)âĉ Ω̂(0)ĉb̂ .

where the (zero order in α′) torsionful spin connection Ω̂(0) is defined by

Ω̂µ̂
(0)âb̂ = ω̂µ̂

âb̂ + 3
2
Ĥµ̂

(0)âb̂ . (70)

Finally, α and β are constants which are related to α′ as follows

α = 2α′ , β = 1
15

α′ . (71)

Note that the action used in the previous sections can be obtained by setting

α = 0 and β = 1/g2.

17We use a short-hand notation in which the antisymmetrized world indices are not
indicated.
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Once we assume that all the solutions to the equations of motion derived

from the above action have an isometry, we expect the usual duality group
SO(1, 1)Sugra. The question we really need to address now is whether a

generalization of Buscher’s duality transformation exists.
This transformation should coincide with the B transformations found

in previous sections in the appropriate limits (Buscher’s original transforma-
tions Eqs. (6) in the limit α′ → 0 and the generalization Eqs. (39,40)). Then,

we are actually looking for the complete form of the α′ corrections to Eqs. (6)
and we know the contribution of the vector fields to them.

We are now going to argue, using a simple observation, that the correc-
tions to the T duality rules can be obtained in a straightforward manner. We

first note that the torsionful spin connection Ω̂(0) is a dependent field given
in terms of the D–bein and the axion. This fixes the zero-th order duality

rules of Ω̂(0). To calculate these we first have to give the duality rules of the
D–bein. For this purpose we parametrize the D–bein as follows:

(êµ̂
â) =

(
eµ

a kAµ

0 k

)
, (êâ

µ̂) =

(
ea

µ −Aa

0 k−1

)
, (72)

where Aa = ea
µAµ. Note that this is the first time that we are forced to

use k instead of k2. To lowest order in α′ the duality rule of k2 is given by

k̃2 = 1/k2. This means that for k we have

k̃ = ∓1

k
. (73)

These two signs are not really different since the two possibilities are

related to each other by a discrete Lorentz transformation (in tangent space)
˜̂eµ̂

x = −êµ̂
x. In D dimensions this leads to the following lowest-order rule of

the D-bein, (here we choose the upper sign in Eq. (73)):

˜̂ex
â =

1

ĝxx

êx
â ,

˜̂eµ
â = êµ

â − 1

ĝxx

(
ĝxµ − B̂xµ

)
êx

â , (74)

so the dual of Ω̂(0) is
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˜̂
Ωx

(0)âb̂ = −Ω̂x
(0)âb̂/Ĝ(0)

xx ,
˜̂
Ωµ

(0)âb̂ = Ω̂µ
(0)âb̂ − Ω̂x

(0)âb̂Ĝ(0)
xµ/Ĝ(0)

xx , (75)

where Ĝ
(0)
µ̂ν̂ = ĝµ̂ν̂ + B̂µ̂ν̂ is the zero-slope limit of Ĝµ̂ν̂ . We now observe that

this duality rule is identical to that of a non-Abelian vector field V̂ I
µ̂ (see

Eq. (39)), to lowest order in α′, when we consider the pair of Lorentz indices

âb̂ as a Yang–Mills index.
We can combine this with the observation that we already know how to

construct duality-invariant actions for the Yang–Mills fields. In fact we can
extend our results for the Yang–Mills fields to a more general action for-

mula: given a vector field which, to lowest order in α′, transforms as given
in Eqs. (39), an action can be constructed which is duality invariant up to

linear order in α′. The action is given by Eq. (20) (with the identification
1/g2 = β = α′/15 and the Yang–Mills field being replaced by the vector field

in question) and the corresponding duality rules are given by Eqs. (39).

We now apply the above action formula to the case that the gauge group
of the vector field is given by the direct product of the Yang–Mills group

times the D-dimensional Lorentz group. This leads to the action given in
Eq. (67). The corresponding duality rules, to linear order in α′ are given by

Eqs. (39), where

Ĝµ̂ν̂ = ĝµ̂ν̂ + B̂µ̂ν̂ − 1
2

{
αΩ̂µ̂

(0)âb̂Ω̂ν̂
(0)âb̂ + βV̂ I

µ̂ V̂Iν̂

}
. (76)

instead of Eq. (40).
We would like to stress the following points:

• The duality rules that we just have obtained considerably simplify if
the gauge group is embedded into the holonomy group since in that

case the last two terms in Eq. (76) cancel against each other. We note
that for α = 0 and Abelian vector fields, the duality rules of the gauge

fields are those of Refs. [30, 29]. These rules can be derived using the
σ-model approach if the gauge fields couple to the string via bosonic

group coordinates. The same rules can also be derived for the case that
the gauge fields couple via heterotic fermions to the string. However,

in that case, to obtain the same answer, one has to take into account
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the Yang–Mills anomaly. In the general case with α 6= 0 one also

should consider the Lorentz anomaly. In case the embedding is made,
there is an anomaly cancellation which leads to the simplified duality

rules mentioned above. In particular, the simplified duality rules of the
vector fields are now the ones given in Ref. [31].

• Since the structure of the higher order in α′ corrections seems to be

such that the torsionful spin connection Ω̂ enters always in the same
way as the Yang-Mills vector field V̂ I (apart from the fact that Ω̂ has

to be redefined at each order but V̂ I does not), one may expect that
the structure of higher order in α′ corrections to the duality rules will

be such that Eqs. (39) can still be used but the effective metric (76)

will get higher order corrections in which Ω̂ and V̂ I will appear in the
same way. If this was true, the embedding of the gauge group into the

holonomy group would produce a cancellation of all the corrections and
Buscher’s original transformations would not get corrections. This is

also consistent with the results in Ref. [31].

• It is interesting to note that a combination similar to the effective
metric given in Eq. (76) also appears in Ref. [32]. There it was observed

that a manifestly supersymmetric way of cancelling the Green-Schwarz

anomaly in the heterotic string effective action is to make a redefinition
of the metric. The new metric is essentially our effective metric. This

suggests that this effective metric could play an important role in the
heterotic string effective action and that it could be the right object

in terms of which many terms could be expressed. A geometrical or
physical interpretation is still lacking.

We thus conclude that Buscher’s duality transformations have a straight-

forward generalization to first order in α′. Are the other zero-slope duality

symmetries also preserved? The answer is yes (except for the A transforma-
tion). The duality symmetries are then those of the Sugra+YM action.

Finally, we can also ask what happens to the SO(1, 2)Sugra duality group
if we take just a single Abelian field. Do these transformations receive α′

corrections as well or are they already exact up to this order? The situation
is not entirely clear: it is true that both the α as the β transformations (the

ones that are gauge transformations and g.c.t.’s) do not receive corrections
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and we suppose that the so(1, 2) algebra holds. However this does not mean

that the non-trivial solution generating transformation γ cannot have correc-
tions because of the algebra structure. It would be entirely consistent with

the absence of α′ corrections in the α, β transformations and in the so(1, 2)
algebra to assume that the γ transformations have α′ corrections that com-

mute with the α and β transformations. More work is necessary to answer
these questions and we hope to present our results elsewhere soon [33].
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A The Sen Transformations

In this appendix we give the explicit form of the solution generating transfor-

mation introduced by Sen in D dimensions. A special case plus the infinitesi-
mal form of these formulae are given in Eqs. (62) and Eqs. (65), respectively.

The general and finite Sen rules are:

ĝ′
xx = 16

N2 ĝxx ,

ĝ′
xµ = 16

N2 ĝxx

[
ĝxµ

ĝxx

− γ

(
V̂µ − V̂x

ĝxµ

ĝxx

)
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+1
2
γ2

(
B̂xµ − 1

2
V̂xV̂µ + 1

2
V̂ 2

x

ĝxµ

ĝxx

)]
,

ĝ′
µν = ĝµν −

ĝxµĝxν

ĝxx

+ 16
N2 ĝxx

[
ĝxµ

ĝxx

− γ

(
V̂µ − V̂x

ĝxµ

ĝxx

)
+ 1

2
γ2

(
B̂xµ − 1

2
V̂xV̂µ + 1

2
V̂ 2

x

ĝxµ

ĝxx

)]

×
[
ĝxν

ĝxx

− γ

(
V̂ν − V̂x

ĝxν

ĝxx

)
+ 1

2
γ2

(
B̂xν − 1

2
V̂xV̂ν + 1

2
V̂ 2

x

ĝxν

ĝxx

)]
,

B̂′
xµ = B̂xµ − 1

2
V̂xV̂µ + 1

2
V̂ 2

x

ĝxµ

ĝxx

+ 1
N

[
2V̂x + γ

(
V̂ 2

x − 2ĝxx)
)]

×
[
V̂µ − V̂x

ĝxµ

ĝxx

− γ

(
B̂xµ − 1

2
V̂xV̂µ + 1

2
V̂ 2

x

ĝxµ

ĝxx

)]
,

B̂′
µν = B̂µν − V̂x

ĝx[µV̂ν]

ĝxx

− γ

(
V̂[µ − V̂x

ĝx[µ

ĝxx

)
B̂xν]

+ 2
N

[
2V̂x + γ

(
V̂ 2

x − 2ĝxx

)]

×
[
ĝx[µV̂ν]

ĝxx

− γ
ĝx[µ

ĝxx

(
B̂xν] − 1

2
V̂xV̂ν]

)
+ 1

2
γ2

(
V̂[µ − V̂x

ĝx[µ

ĝxx

)
B̂xν]

]
,

V̂ ′
x = 2

N

[
2V̂x + γ

(
V̂ 2

x − 2ĝxx

)]
,

V̂ ′
µ = V̂µ − V̂x

ĝxµ

ĝxx

− γ
(
B̂xµ − 1

2
V̂xV̂µ + 1

2
V̂ 2

x

ĝxµ

ĝxx

)

+ 2
N

[
2V̂x + γ

(
V̂ 2

x − 2ĝxx

)]

×
[
ĝxµ

ĝxx

− γ

(
V̂µ − V̂x

ĝxµ

ĝxx

)
+ 1

2
γ2

(
B̂xµ − 1

2
V̂xV̂µ + 1

2
V̂ 2

x

ĝxµ

ĝxx

)]
,
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φ̂′ = φ̂ + 1
2
log 4

N
.

where

N = 4 + 4γV̂x + γ2
(
V̂ 2

x − 2ĝxx

)
. (77)

Note that, unlike the case of the Buscher transformations, the effective
metric Ĝµ̂ν̂ defined in (40) does not seem to play any special role in the

above transformations. We have verified that under SO(1, 2) the effective
metric does not transform into itself. This is in contradistinction with the

Z2 transformations (see Eq. (42)).

B Duality Symmetries In D = 11, 10 And 9

Type II Theories

In this Appendix we will discuss duality symmetries in eleven, ten and nine

dimensions for Type II theories. We will use the results and conventions of

Ref. [17].
This Appendix is organized in subsections with increasing number of

isometries and decreasing number of dimensions for each case.

B.1 No isometries

D=11 There is a single SO↑(1, 1)brane symmetry whose weights are given in

Table 3. This symmetry essentially counts the mass dimension of the

different fields. We also stress that
ˆ̂
C is a pseudo-tensor that changes

sign under improper g.c.t. ’s.

B.2 One isometry

D=11 In addition to the symmetries of the previous section, we have to

consider the subgroup of g.c.t. ’s that preserve the condition that the
fields do not depend on the coordinate y. This group is

GL(1, R) = SO↑(1, 1) × Z
(y)
2 . (78)
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Name
ˆ̂
C ˆ̂g S(11)

SO↑(1, 1)brane
3
2

1 9
2

Table 3: Weights of the D = 11, N = 1 supergravity fields and action under
SO↑(1, 1)brane.

Name Ĉ ĝ B̂(1) Â(1) eφ̂ S
(10)
IIA

SO↑(1, 1)brane 1 1 1 0 1
2

3
2

SO↑(1, 1)y 0 1 1 -1 3
2

1

Z
(y)
2 − + + − + +

Table 4: Weights of the D = 10 Type IIA supergravity fields and action under
SO↑(1, 1)brane × SO↑(1, 1)y × Z

(y)
2 .

D=10, Type IIA Taking into account that
ˆ̂
C changes sign under the (now)

internal Z
(y)
2 , the eleven-dimensional transformations become the group

SO↑(1, 1)brane × SO↑(1, 1)y × Z
(y)
2 , (79)

of global symmetries of the equations of motion. The SO↑(1, 1)’s act as

scalings and the weights and sign changes under Z
(y)
2 are summarized

in Table 4.

D=10, Type IIB This theory has a manifest SL(2, R) duality which in the
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string frame acts of the fields as follows

̂′µ̂ν̂ = |cλ̂ + d| ̂µ̂ν̂ , λ̂′ =
aλ̂ + b

cλ̂ + d
,


 B̃(2)′

µ̂ν̂

B̃(1)′
µ̂ν̂


 =

(
a b
c d

)
 B̃(2)

µ̂ν̂

B̃(1)
µ̂ν̂


 , (80)

where ad − bc = 1 and λ̂ = ℓ̂ + ie−ϕ. There are several specially

interesting subgroups of SL(2, R). One is a Z2 generated by

λ̂′ = −1/λ , ̂′µ̂ν̂ = |λ| ̂µ̂ν̂ , B̂(2)′
µ̂ν̂ = B̂(1)

µ̂ν̂ , B̂(2)′
µ̂ν̂ = −B̂(1)

µ̂ν̂ .

(81)

This transformation inverts the string coupling constant (for ℓ̂ = 0)

and that is why it makes sense to identify SL(2, R) with the S-duality

group. On the other hand, B̂(1) is a Type I field, whose origin is the el-
ementary excitations of the string, but B̂(2) is a Ramond-Ramond-type

field, whose origin is in solitonic modes on the worldsheet. There-
fore, this transformation has also an “electric-magnetic” side from the

worldsheet point of view.

Another subgroup is a scaling S̃O
↑
(1, 1)y given in Table 5. It can

be obtained from the SO↑(1, 1)y of Type IIA using Type II Buscher

duality [20]. Using it, we have also translated SO↑(1, 1)brane × Zy to
the Type IIB language. the results are given also in Table 5.

The total group on global symmetries of the equations of motion is,
then

GL(2, R) = SL(2, R) × S̃O
↑
(1, 1)brane × Z̃

(y)

2 . (82)

We would like to remark that this is exactly the global symmetry group

that one would expect in a ten-dimensional theory that has been ob-
tained by dimensional reduction from a twelve-dimensional theory with

no global symmetries whatsoever.
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Name D̂ ̂ B̂(1) B̂(2) ℓ̂ eϕ̂ S
(10)
IIB

S̃O
↑
(1, 1)brane 1 1 1 0 -1 1 2

S̃O
↑
(1, 1)y 0 1 1 -1 -2 2 0

Z̃
(y)

2 − + + − − + +

Table 5: Weights of the D = 10 Type IIB supergravity fields and (F̂ (D̂) = 0

truncated) action under S̃O
↑
(1, 1)brane × S̃O

↑
(1, 1)y × Z̃

(y)

2 .

D=10, Type I Truncating any of the Type II theories by setting the Ramond-

Ramond fields to zero we obtain the symmetries of the Type I theory.
These are

SO↑(1, 1)brane × SO↑(1, 1)y × Z
(A)
2 . (83)

The SO↑(1, 1)y group is the same as in Type IIA and the same as

S̃O
↑
(1, 1)y in Type IIB, and is the only subgroup that remains of

SL(2, R).

B.3 Two isometries

D=11 Upon dimensional reduction to nine dimensions, the global symmetry

group that we expect is

GL(2, R)× SO↑(1, 1)brane = SL(2, R)× SO↑(1, 1)× SO↑(1, 1)brane×Z2 .

(84)

D=10, Type IIA and B In presence of an isometry (in ten dimensions),

the Type IIA and Type IIB theories are related by Type II duality
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[17]. There are other global symmetries which are not covariant from

the ten-dimensional point of view. They are become covariant when we
rewrite the theories in nine-dimensional language and so we will discuss

them below.

D=10, Type I Upon truncation of the Ramond-Ramond-type fields both

Type II theories become the Type I theory and the Type II duality that
related them becomes the Z

(B)
2 Buscher duality that we also discuss

below in nine dimensions.

D=9, Type II In nine dimensions there is a single Type II theory whose

global symmetry group is the one we expected:

SL(2, R) × SO↑(1, 1)x+y × SO↑(1, 1)brane × Z
(x)
2 . (85)

This SL(2, R) group is a symmetry of the action. From the Type IIB

point of view it is the manifest SL(2, R) symmetry of the original the-
ory and from the point of view of the Type IIA is part of the sym-

metry predicted in eleven dimensions. It contains one particular sub-

group of scalings: SO↑(1, 1)x−y corresponding to the eleven-dimensional
g.c.t. x → eαx , y → e−αy. SO↑(1, 1)x+y scales the fields and the action

and corresponds to the eleven-dimensional g.c.t. x → eαx , y → eαy.
Combining it with SO↑(1, 1)brane, a second scaling symmetry of the ac-

tion can be obtained. Finally, Z
(x)
2 corresponds to improper g.c.t.s in

the internal space, for instance x → −x (up to SL(2, R) rotations).
The weights of the different nine-dimensional fields are summarized in

Table 6.

D=9, Type I After truncation of the Type II theory, two interesting and

opposite phenomena take place: the breaking of the Type I SL(2, R)

to just SO↑(1, 1)x−y, and a discrete symmetry enhancement from Z
(x)
2

to D4, due to the appearance of two new Z2’s: Z
(A)
2 and Z

(B)
2 . The

appearance of Z
(A)
2 is related to the disappearance of the topological

term in the action. The appearance of Z
(B)
2 is more subtle and was

discussed in Ref. [17]. In Table 1 the weights of the nine-dimensional

Type I fields under certain combination of these symmetries are given.
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Name C g B(1) B(2) A(1) A(2) B k ℓ eφ S
(9)
II−red

SO↑(1, 1)brane 1 1 1 1 0 0 1 1
2

0 1
4

3

SO↑(1, 1)x−y 0 1 1 -1 -1 1 0 −1
2

-2 7
4

0

SO↑(1, 1)x+y 0 1 1 1 -1 -1 2 3
2

0 3
4

2

Z
(x)
2 − + − + + − + + − + +

Table 6: Weights of the D = 9 Type II supergravity fields and action under
SL(2, R) × SO↑(1, 1)x+y × SO↑(1, 1)brane × Z

(x)
2 .
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