10 research outputs found

    Learning to Crawl

    Full text link
    Web crawling is the problem of keeping a cache of webpages fresh, i.e., having the most recent copy available when a page is requested. This problem is usually coupled with the natural restriction that the bandwidth available to the web crawler is limited. The corresponding optimization problem was solved optimally by Azar et al. [2018] under the assumption that, for each webpage, both the elapsed time between two changes and the elapsed time between two requests follow a Poisson distribution with known parameters. In this paper, we study the same control problem but under the assumption that the change rates are unknown a priori, and thus we need to estimate them in an online fashion using only partial observations (i.e., single-bit signals indicating whether the page has changed since the last refresh). As a point of departure, we characterise the conditions under which one can solve the problem with such partial observability. Next, we propose a practical estimator and compute confidence intervals for it in terms of the elapsed time between the observations. Finally, we show that the explore-and-commit algorithm achieves an O(T)\mathcal{O}(\sqrt{T}) regret with a carefully chosen exploration horizon. Our simulation study shows that our online policy scales well and achieves close to optimal performance for a wide range of the parameters.Comment: Published at AAAI 202

    Easy Learning from Label Proportions

    Full text link
    We consider the problem of Learning from Label Proportions (LLP), a weakly supervised classification setup where instances are grouped into "bags", and only the frequency of class labels at each bag is available. Albeit, the objective of the learner is to achieve low task loss at an individual instance level. Here we propose Easyllp: a flexible and simple-to-implement debiasing approach based on aggregate labels, which operates on arbitrary loss functions. Our technique allows us to accurately estimate the expected loss of an arbitrary model at an individual level. We showcase the flexibility of our approach by applying it to popular learning frameworks, like Empirical Risk Minimization (ERM) and Stochastic Gradient Descent (SGD) with provable guarantees on instance level performance. More concretely, we exhibit a variance reduction technique that makes the quality of LLP learning deteriorate only by a factor of k (k being bag size) in both ERM and SGD setups, as compared to full supervision. Finally, we validate our theoretical results on multiple datasets demonstrating our algorithm performs as well or better than previous LLP approaches in spite of its simplicity

    Interactive Q-Learning with Ordinal Rewards and Unreliable Tutor

    Get PDF
    Abstract. Conventional reinforcement learning (RL) requires the specification of a numeric reward function, which is often a difficult task. In this paper, we extend the Q-learning approach toward the handling of ordinal rewards. The method we propose is interactive in the sense of allowing the agent to query a tutor for comparing sequences of ordinal rewards. More specifically, this method can be seen as an extension of a recently proposed interactive value iteration (IVI) algorithm for Markov Decision Processes to the setting of reinforcement learning; in contrast to the original IVI algorithm, our method is tolerant toward unreliable and inconsistent tutor feedback
    corecore