
Interactive Q-Learning with
Ordinal Rewards and Unreliable Tutor

Paul Weng1, Robert Busa-Fekete2, and Eyke Hüllermeier2

1 Université Pierre et Marie Curie, LIP6, Paris
2 Department of Mathematics and Computer Science,

Marburg University, Germany

Abstract. Conventional reinforcement learning (RL) requires the spec-
ification of a numeric reward function, which is often a difficult task. In
this paper, we extend the Q-learning approach toward the handling of
ordinal rewards. The method we propose is interactive in the sense of
allowing the agent to query a tutor for comparing sequences of ordinal
rewards. More specifically, this method can be seen as an extension of a
recently proposed interactive value iteration (IVI) algorithm for Markov
Decision Processes to the setting of reinforcement learning; in contrast
to the original IVI algorithm, our method is tolerant toward unreliable
and inconsistent tutor feedback.

Keywords: reinforcement learning, ordinal rewards, preference learning

1 Introduction

Reinforcement learning (RL) has proved to be successful in many domains (game
playing [1], robotics [2], finance [3], amongst others). Yet, the definition of a
numeric reward function, as required in the standard RL setting, is often difficult
in practice, especially in situations where rewards do not represent a physical
or objective measure (such as duration, distance, monetary costs/gains, etc.).
For example, when trying to teach an RL agent to perform a high level task
(e.g., driving fast around a racing track [4], spoken dialog system [5]), it is not
obvious how to specify numeric feedback signals locally so as to induce a policy
accomplishing that task in a globally optimal manner.

To alleviate this problem, our idea is to make the RL setting amenable to
ordinal feedback signals, i.e., rewards measured on an ordinal scale. Thus, our
approach relies on the assumption that, from a modeling point of view, deal-
ing with ordinal rewards might be easier or more convenient than dealing with
numerical ones. While certainly not true in general, this assumptions is tenable
at least for certain types of applications. When measuring the health state of
a patient, for example, a medical doctor might be able to provide feedback of
the form “the patient is in a critical condition” or “the patient is doing well”,
whereas she will hardly be willing to quantify the state in terms of a precise
number.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SZTE Publicatio Repozitórium - SZTE - Repository of Publications

https://core.ac.uk/display/35345694?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Paul Weng, Robert Busa-Fekete, and Eyke Hüllermeier

In the setting considered in this paper, an RL agent is acting on behalf of a
user, who occasionally interacts with the learning system by providing tutorial
feedback. After performing an action in a state, the agent receives an immediate
ordinal reward, i.e., a value from a categorical, completely ordered scale. By
counting (with a discount factor γ) the number of times each ordinal reward was
obtained while moving through the environment, the cumulative reward can be
represented by a corresponding counting vector—thus, the problem is translated
from a single-dimensional ordinal to a multi-dimensional numeric one. In the
course of the learning process, the agent is allowed to query the user/tutor for
helping her to compare sequences of ordinal rewards (i.e., the corresponding
counting vectors). Although such queries are answered correctly only with a
certain probability, they provide useful information about the user’s preferences,
which are a-priori not known to the RL agent. In this setting, we propose a
variant of the Q-Learning algorithm for finding a good policy.

The case of an unknown or partially known reward function has been consid-
ered in several studies in the context of Markov decision processes [6–9] as well
as in reinforcement learning [10–12]. Besides, our work is related to preference-
based reinforcement learning [13, 14], learning from demonstration [15] and ap-
prenticeship learning [16]. However, closest to our setting is the work of Weng
and Zanuttini [17], who proposed an interactive value iteration (IVI) algorithm
for solving Markov decision processes if only the order of the rewards is known.
In fact, our work can be seen as an extension of this approach to the setting
of reinforcement learning; besides, as mentioned above, we also allow the tu-
tor to make mistakes, whereas the approach of Weng and Zanuttini assumes an
error-free tutor.

In the next section, we introduce notation and detail the formal setup of
our approach. In Section 3, we elaborate on the question of how the RL agent
can learn the user’s preferences; to this end, we first introduce a deterministic
representation of the feasible preference models and then propose a probabilistic
generalization thereof. Our interactive Q-learning algorithm is then introduced
in Section 4 and analyzed experimentally in Section 5. The paper ends with a
summary and an outlook on future work in Section 6.

2 Notation and formal setup

2.1 Markov decision processes

A Markov Decision Process (MDP) is defined as a quintupleM = (S,A, p, r, γ),
with S a finite set of states, A a finite set of actions, p : S × A → P(S) a
transition function mapping state/action pairs to probability distributions over
states, r : S ×A→ IR a reward function, and γ ∈ [0, 1[a discount factor [18].

A (stationary, deterministic) policy π : S → A associates an action with each
state. Such a policy is assessed by a value function vπ : S → IR defined as follows:

vπ(s) = r(s, π(s)) + γ
∑
s′∈S

p(s, π(s), s′)vπ(s′) (1)

Interactive Q-Learning with Ordinal Rewards 3

Then, a preference relation is defined over policies as follows:

π % π′ ⇔ ∀s ∈ S, vπ(s) ≥ vπ
′
(s)

A solution to an MDP is a policy that ranks highest with respect to %. Such a
policy, called optimal policy, can be found by solving the Bellman equations:

v∗(s) = max
a∈A

r(s, a) + γ
∑
s′∈S

p(s, a, s′)v∗(s′) (2)

As can be seen, the preference relation % over policies is directly induced by the
reward function r.

2.2 Ordinal reward MDP

As introduced in [19], an Ordinal Reward MDP (ORMDP) is defined as an
MDP (S,A, p, r̂, γ) in which the reward function r̂ : S×A→ E takes values in a
qualitative, totally ordered scale E = {e1 < e2 . . . < ek}. Such an ORMDP can
be reformulated as a Vector Reward MDP (VMDP) (S,A, p, r, γ), where r(s, a)
is the vector in IRk whose i-th component is 1 for r̂(s, a) = ei and 0 in the other
components. Like in standard MDPs, the value function vπ of a policy π in a
VMDP can be defined as follows:

vπ(s) = r(s, π(s)) + γ
∑
s′∈S

p(s, π(s), s′)vπ(s′) , (3)

where sums and products over vectors are componentwise. This equation amounts
to counting the number of ordinal rewards obtained by applying a policy. There-
fore, a value function in a state can be interpreted as a multiset or bag of ele-
ments of E, and comparing policies essentially means comparing vectors. In the
following, counting vectors will be denoted β = (β1, . . . , βk), and the preference
relation over such vectors by �.

Proposition 1 If E were a numerical scale, then vπ(s) =
∑k
i=1 v

π
i (s)ei.

A natural dominance relation �D on counting vectors is given by

β �D β′ ⇔ ∀i = 1, . . . , k :

k∑
j=i

βj ≥
k∑
j=i

β′j (4)

This relation states that for any reward ei, the number of rewards as good as or
better than ei is higher in β than in β′. This dominance essentially corresponds
to a translation of first-order stochastic dominance [20] to our setting. It can
also be viewed as Pareto dominance over transformed vectors

L(β) =

βk, βk−1 + βk, . . . ,

k∑
j=1

βj

 .

4 Paul Weng, Robert Busa-Fekete, and Eyke Hüllermeier

Although �D is a partial order relation and may not be very discriminating, we
will nevertheless use it for eliminating vectors corresponding to policies that are
dominated for every reward function.

In [19], it is shown that, under natural assumptions about the preference
relation � over counting vectors (formalized in terms of corresponding axioms),
there always exists a numerical function ρ : E → R representing �:

∀β,β′ : β � β′ ⇐⇒
k∑
i=1

βiρ(ei) ≥
k∑
i=1

β′iρ(ei). (5)

The existence of such an embedding of E in the reals has an important im-
plication: An RL agent that optimally acts in the sense of % is behaviorally
equivalent to a standard RL agent that optimally acts according to the numer-
ical reward function r = ρ ◦ r̂. This is to some extent comparable to classical
expected utility theory: A decision maker who obeys certain rationality axioms
behaves as if she were an expected utility maximizer [21]. Consequently, her be-
havior can be mimicked by maximizing expected utility with properly defined
rewards on outcomes.

Correspondingly, our idea is to reduce the learning of an optimal policy for
our target ORMDP to the learning of an optimal policy for a standard MDP
M = (S,A, p, r, γ) with numeric reward function r = ρ ◦ r̂. Of course, since this
function is not known, our problem is actually more difficult and also involves
learning the embedding ρ. This will be accomplished on the basis of feedback
provided by the tutor, namely pairwise comparisons between counting vectors.

3 Learning the user’s preferences

3.1 Reliable tutor

According to (5), the comparison of two counting vectors β = (β1, . . . , βk) and
β′ = (β′1, . . . , β

′
k) gives rise to a linear inequality of the form

k∑
i=1

(βi − β′i)ei ≥ 0.

Correspondingly, provided the tutor’s answers are always correct, the current
knowledge about the numeric preference representation can be expressed as a
polytope. Initially, this polytope merely encodes the order of the ordinal rewards
and is specified by the inequalities:

K0 =


e2 − e1 ≥ η
e3 − e2 ≥ η
. . .
ek − ek−1 ≥ η


where k is the (supposedly known) number of different ordinal rewards and
η a small positive value, representing the smallest difference between any two

Interactive Q-Learning with Ordinal Rewards 5

consecutive rewards. As shown in [22], two values can be set without loss of
generality, e.g. e1 = 0 and ek = 1. As a side remark, we note that K0 could be
enriched by more prior knowledge about reward values, provided this knowledge
can be expressed in terms of linear inequalities.

Each answer to a query will reduce the size of the polytope, making the
current knowledge more specific. Thus, starting from K0, the knowledge Kt at
time step t is obtained from Kt−1 by adding the inequality derived from the
answer to the last query. Obviously, Kt can then also be used to compare two
counting vectors β = (β1, . . . , βk) and β′ = (β′1, . . . , β

′
k) that represent two

sequences of ordinal rewards. To this end, one first solves the following linear
program:

min.

k∑
i=1

(βi − β′i)ei

s.t. Kt

If the optimal value of the objective function is non-negative, then β � β′:
The preferences of the tutor revealed so far imply that she must prefer β to β′.
Otherwise, the following program is solved:

max.

k∑
i=1

(βi − β′i)ei

s.t. Kt

If the optimal value of the objective function is non-positive, then, for the same
reason as above, β′ � β. Otherwise, the current knowledge Kt is not specific
enough for comparing the two vectors. In this case, a definite answer can only
be obtained by asking the tutor herself.

3.2 Unreliable tutor

The above approach only works under the assumption of an error-free tutor.
Otherwise, if the tutor may report incorrect (reversed) preferences, the polytope
Kt may easily collapse. Therefore, we opt for a more flexible approach that allows
for handling “noisy” preferences. To this end, we model the feedback of the tutor
in a probabilistic way. More specifically, we make use of a mixed logistic model
or Bradley-Terry model [23]:

P
[

(β1, . . . , βk) � (β′1, . . . , β
′
k) | e1, . . . , ek, c

]
= (6)

=
exp

(
c
∑k
i=1 βiei

)
exp

(
c
∑k
i=1 βiei

)
+ exp

(
c
∑k
i=1 β

′
iei

)
=

1

1 + exp
(
−c
∑k
i=1(βi − β′i)ei

)

6 Paul Weng, Robert Busa-Fekete, and Eyke Hüllermeier

where c ≥ 0 is a real-valued parameter modeling the precision of the tutor (for
c → ∞, the model converges toward the error-free case, whereas for c = 0, she
provides answers purely at random).

By using the maximum likelihood principle, one can fit the Bradley-Terry
model to the answers of the unreliable tutor. Assume that the set of queries
asked so far is given in the form B =

{
(β1,β

′
1), . . . , (βn,β

′
n)
}

, where βi =
(βi,1, . . . , βi,k) and β′i = (β′i,1, . . . , β

′
i,k) are the vectors that were compared in

the i-th query. Without loss of generality, we can assume that the answer of the
tutor was βi � β′i for all 1 ≤ i ≤ n. Then, the log-likelihood function can be
written as follows:

L(e1, . . . , ek, c | B) =

N∑
`=1

logP
[
β` � β′` | e1, . . . , ek, c

]
. (7)

Note that the scale parameter c should not be tuned, but assumed to be constant.
In this way, the parameters e1, . . . , ek found are not scaled, nevertheless, after
the optimization one can rescale them so as ek = 1.

In order to obtain estimates and confidence intervals for the model parame-
ters, we apply a basic form of non-parametric bootstrap [24]. This method can be
summarized as follows: A bootstrap sample B̄ is obtained by randomly sampling
n times from B with replacement. We repeat this resampling m times to obtain
a set of independent bootstrap samples {B̄1, . . . , B̄m}. Then, by optimizing the
log-likelihood function (7) for each of these m samples, m different parameter
estimates can be obtained. Finally, confidence intervals for the model parameters
can be calculated based on the empirical quantiles from the bootstrap distribu-
tion. This approach is called percentile interval (for more details, see Section 13
in [24]).

Based on the confidence intervals of the model parameters, it is possible to
estimate the uncertainty of a new prediction obtained by the model. To this
end, denote the confidence interval of ei by [`i, ui], 1 ≤ i ≤ k3.Then, obeying the
constraints imposed by these intervals, the highest possible score for two vectors
β and β′ is given by

smax(β,β′) = max
e′i∈[`i,ui]

P
[
β � β′ | e′1, . . . , e′k, c

]
.

Likewise, the lowest score is

smin(β,β′) = min
e′i∈[`i,ui]

P
[
β � β′ | e′1, . . . , e′k, c

]
.

For the model given in (6), the interval [smin(β,β′), smax(β,β′)] is easy to
calculate. Based on this interval, we can decide whether our model ranks β
significantly higher than β′ (smin(β,β′) > 1/2), β′ significantly higher than
β (smax(β,β′) < 1/2), or whether the prediction is not considered confident
enough to reliably compare β and β′ (smin(β,β′) ≤ 1/2 ≤ smax(β,β′)).

3 Here one can use the rescaled values for e1, . . . , ek where ek = 1, but in this case,
the confidence intervals should be also rescaled appropriately.

Interactive Q-Learning with Ordinal Rewards 7

4 Interactive Q-learning

In this section, we extend a well-known model-free reinforcement learning al-
gorithm called Q-learning [25], so as to make it amenable to vectorial reward
functions as described in Section 2.2. We consider the infinite horizon case, where
the discount factor is denoted by γ. Furthermore, we assume the availability of a
generative model, whence policy learning can be carried out in an online fashion.

Environment

Update the value estimates

Controller/Q-learning

Test

Tutor

Probabilistic
model

ε-greedy
action

Reward

State

Query

Answer

Fig. 1. A schematic overview of our policy search framework.

Figure 1 provides a schematic overview describing the process of policy search
in our setup. Like in standard reinforcement learning, the RL agent and the
environment are interacting with each other via actions, states and rewards.
Based on the feedback coming from the environment, which here consists of a
state and a vectorial reward, the agent updates its model after each step. In
our ordinal reinforcement learning setup, the agent’s goal is to approximate a
vectorial action-value function for each state. However, to select the best action
(based on the vectorial action-value function approximation), it has to be aware
of the preference relation ' over vectorial rewards. Here, we assume that the
agent can query the tutor about the preferences ' of vector pairs.

Since querying the tutor/expert might be expensive, the number of queries
asked during the policy search should be kept as low as possible. As explained
previously, we fit a logistic model for the answers given by the tutor so far,
and compute the confidence intervals of the model parameters. When the agent
needs to compare two new vectors, the logistic model is used first. If the model
is confident enough, we simply adopt its prediction and do not query the tutor.

8 Paul Weng, Robert Busa-Fekete, and Eyke Hüllermeier

Algorithm 1 Interactive Q-Learning(S,A, r̂, γ)

1: t← 0
2: compute r from r̂
3: B = ∅
4: ∀s ∈ S,∀a ∈ A, Q(s, a)← (0, . . . , 0)
5: ∀s ∈ S, B(s)← Random action from A . Keep track of the best action
6: repeat
7: Choose action at (by following, for example, an ε-greedy policy)
8: (st+1, rt+1)← Simulate(st, at)
9: δt ← rt+1 + γQ(st+1, B(st+1))−Q(st, at)

10: Q(st, at)← Q(st, at) + αtδt
11: if at 6= B(st) then
12: [B(st),M,B]← getBest(Q(st, at), at, Q(st, B(st)), B(st),M,B)
13: else
14: for a ∈ A do
15: [B(st),M,B]← getBest(Q(st, a), a,Q(st, B(st)), B(st),M,B)

16: t← t+ 1
17: until stopping condition
18: return Q and B

Otherwise, the tutor is queried, and the model is refitted based on the answer
given.

Algorithm 1 shows the pseudo-code of the extended Q-learning algorithm.
Since we are dealing with a vectorial Q-function, the operations made with
Q(., .) are meant componentwise. Beside the Q-value estimates, we also need
to keep track of the actions that are currently considered best for each state; in
our setting, figuring out which action is best for a given state is indeed more
complex than comparing two real-valued numbers like in standard value-based
MDPs. We denote the function that stores the current best action for a state by
B : S → A.

The core of Algorithm 1 is the same as for the original Q-learning method: se-
lect an action at, generate reward and next state based on the generative model,
and update the Q-function estimate (lines 7 – 10). If the action at selected in
line 7 is not the current best action (at 6= B(st)), then we only need to check
whether the Q-value estimate for (st, at) has improved compared to Q(st, B(st))
(i.e., the vectorial Q-value estimate for the current best action B(st)). The func-
tion getBest (to be detailed below) implements this comparison. In the case
where the selected action at coincides with the current optimal one (at = B(st)),
we have to check whether the Q-value estimate Q(st, at) for the current best ac-
tion has really preserved its dominance over all other actions (lines 14–15).

Algorithm 2 implements the comparison between two vectors mentioned
above, that is, it decides whether our current probabilistic model is reliable
enough to decide which vector of rewards, either β or β′, is preferred, or whether
this decision should better be left to the tutor. The set of preferences B obtained
from the tutor so far is provided as an input parameter. If B is empty, the tutor

Interactive Q-Learning with Ordinal Rewards 9

Algorithm 2 getBest(β, a,β′, a′,M,B)

1: if B = ∅ then
2: g = 1/2, c = 1/2
3: else
4: [g, c]←M(β,β′) . Forecast the preference by using the current model

5: if 1/2 /∈ [g − c, g + c] then . The forecast is confident
6: if g > 1/2 then
7: return < a,M,B >
8: else
9: return < a′,M,B >

10: else . The forecast is not reliable enough
11: Ask the tutor about the relation of β and β′

12: if β � β′ then
13: B ← B ∪ {(β,β′)}
14: M← Build model on B
15: return < a,M,B >
16: else
17: B ← B ∪ {(β′,β)}
18: M← Build model on B
19: return < a′,M,B >

has to be queried anyway. Otherwise, we calculate the score and the confidence
interval produced by our current model M as described in Section 3.2. If the
model’s prediction is confident enough (line 6), we simply return the predicted
preference. Otherwise, we query the tutor and add her answer to B, refit the
model (line 14), and return the answer of the tutor along with the updated
model.

5 Experimental results

To validate our approach, we applied the interactive Q-learning algorithm in
environments modeled as random instances of MDPs [9]. Each random instance
can be described as M = (S,A, p, r, γ), where each pair (s, a) has dlog2(|S|)e
possible successors, the unknown rewards are integers drawn uniformly between
0 and 99, and the discount factor γ is set to 0.95. The algorithm is stopped after
105 iterations. All results are averaged over 20 runs.

In a first series of experiments, we tried our algorithm for different sizes
k = |E| of the ordinal scale E, namely k = 5, 10, . . . , 25, while fixing |S| = 100
and |A| = 5. The experimental results are shown in Figure 2. Without surprise,
we observe that the relative number of queries to the tutor with respect to the
number of all queries is increasing with the number of different reward values
indicating that the preference learning task is becoming more complex with the
size of ordinal rewards scale.

In a second series of experiments, we tested our algorithm on different num-
bers of states |S| = 100, 200, . . . , 500, with |A| = 5 and k = 20 fixed. The exper-

10 Paul Weng, Robert Busa-Fekete, and Eyke Hüllermeier

5 10 15 20 25
8

10

12

14

16

18

20

Steps in reward scale (k)

P
e
rc
e
n
ta
g
e

Fig. 2. The percentage of times the tutor was queried with respect to all queries (tutor
or model) asked as a function of the size of the ordinal reward scale.

imental results are shown in Figure 3. We observe that larger sizes of MDPs are
more difficult to solve, and thus, the tutor is queried relatively more, indicated
by slightly more queries and less usage of the model.

100 200 300 400 500
10

11

12

13

14

15

16

Number of states (|S |)

P
e
rc
e
n
ta
g
e

Fig. 3. The percentage of times the tutor was queried with respect to all queries (tutor
or model) asked in function of the number of states.

Finally, we have also analyzed whether the use of our probabilistic model
as a surrogate of the tutor, or at least a partial surrogate, may have a negative
impact on the quality of the learned policy. To this end, we compared our method
with a variant in which the agent always queries the tutor (and does not learn
a preference representation)—this is actually equivalent to standard Q-learning
using the true reward function. Assuming numerical scale E, we computed the

Interactive Q-Learning with Ordinal Rewards 11

percentage of loss expressed as∑
s

(
v(s)− V (s)

)
|S|maxs,a r(s, a)

× 100 ,

where v(s) = maxa
∑k
i=1Q(s, a).ei and V (s) = maxaQ(s, a) are, respectively,

the estimated value functions computed by Q-learning with and without prefer-
ence model. As shown in Figure 4, the average percentage of loss is lower than
1% on different sizes of the state space.

100 200 300 400 500
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Number of states

P
e
rc

e
n
ta

g
e
 o

f
lo

s
s

Fig. 4. Percentage of loss between Q-learning with and without model.

6 Conclusion

In this paper, we proposed a reinforcement learning algorithm based on Q-
learning, which can be applied in settings where environmental feedback is pro-
vided in the form of ordinal rewards. In this context, the learning agent is allowed
to consult a tutor, who can (unreliably) answer to preference queries comparing
sequences of rewards. Moreover, we experimentally showed that our method,
which uses a Bradley-Terry model for learning the tutor’s preferences from her
answers, is indeed helpful in learning a good policy by lowering the number of
queries needed.

Our preliminary experimental results are promising. For future work, we nev-
ertheless plan to test our algorithm more thoroughly, especially on real bench-
marks that are more realist than random instances of MDPs. Besides, it would
be interesting to investigate more sophisticated strategies for querying the tutor,
thereby decreasing the number of queries even further.

12 Paul Weng, Robert Busa-Fekete, and Eyke Hüllermeier

Acknowledgments. This work was supported by the German Research Foun-
dation (DFG) within the scope of the “Autonomous Learning” priority program,
and by the ANR-10-BLAN-0215 grant of the French National Research Agency.

References

1. Gerald Tesauro. Temporal difference learning and td-gammon. Communications
of the ACM, 38(3), 1995.

2. J. Peters, S. Vijayakumar, and S. Schaal. Reinforcement learning for humanoid
robotics. In IEEE-RAS International Conference on Humanoid Robots, 2003.

3. Yuriy Nevmyvaka, Yi Feng, and Michael Kearns. Reinforcement learning for opti-
mized trade execution. In ICML, 2006.

4. Tim C. Kietzmann and Martin Riedmiller. The neuro slot car racer: Reinforcement
learning in a real world setting. In International Conference on Machine Learning
and Applications, pages 311–316, 2009.

5. Lihong Li, Jason D. Williams, and Suhrid Balakrishnan. Reinforcement learning for
dialog management using least-squares policy iteration and fast feature selection.
In Interspeech, 2009.

6. R. Givan, S. Leach, and T. Dean. Bounded-parameter Markov decision process.
Artif. Intell., 122(1-2):71–109, 2000.

7. F.W. Trevizan, F.G. Cozman, and L.N. de Barros. Planning under risk and Knigh-
tian uncertainty. In IJCAI, pages 2023–2028, 2007.

8. J.Y. Yu and S. Mannor. Online learning in markov decision processes with ar-
bitrarily changing rewards and transitions. In IEEE Game Theory for Networks
(GAMENETS), pages 314–322, 2009.

9. K. Regan and C. Boutilier. Regret based reward elicitation for Markov decision
processes. In UAI, pages 444–451, 2009.

10. A.Y. Ng and S. Russell. Algorithms for inverse reinforcement learning. In ICML,
2000.

11. Arkady Epshteyn, Adam Vogel, and Gerald DeJong. Active reinforcement learning.
In ICML, 2008.

12. U.A. Syed. Reinforcement learning without rewards. PhD thesis, Princeton Uni-
versity, 2010.

13. J. Fürnkranz, E. Hüllermeier, W. Cheng, and S.H. Park. Preference-based rein-
forcement learning: A formal framework and a policy iteration algorithm. Machine
Learning, 89(1):123–156, 2012.

14. R. Akrour, M. Schoenauer, and M. Sebag. Preference-based policy learning. In Eu-
ropean Conference on Machine Learning and Principles and Practice of Knowledge
Discovery in Databases, 2011.

15. S. Schaal. Learning from demonstration. In NIPS, 1997.
16. Pieter Abbeel and Andrew Y. Ng. Apprenticeship learning via inverse reinforce-

ment learning. In ICML, 2004.
17. P. Weng and B. Zanuttini. Interactive value iteration for markov decision processes

with unknown rewards. In International Joint Conference on Artificial Intelligence,
2013.

18. M.L. Puterman. Markov decision processes: discrete stochastic dynamic program-
ming. Wiley, 1994.

19. P. Weng. Markov decision processes with ordinal rewards: Reference point-based
preferences. In ICAPS, volume 21, pages 282–289, 2011.

Interactive Q-Learning with Ordinal Rewards 13

20. M. Shaked and J.G. Shanthikumar. Stochastic Orders and Their Applications.
Academic press, 1994.

21. J. von Neumann and O. Morgenstern. Theory of games and economic behavior.
Princeton university press, 1944.

22. P. Weng. Ordinal decision models for Markov decision processes. In ECAI, vol-
ume 20, pages 828–833, 2012.

23. R.A. Bradley and M.E. Terry. Rank analysis of incomplete block designs, i. the
method of paired comparisons. Biometrika, 39:324–345, 1952.

24. B. Efron and R.J. Tibshirani. An introduction to the bootstrap, volume 57. Chap-
man & Hall/CRC, 1994.

25. R.S. Sutton and A.G. Barto. Reinforcement learning: An introduction. MIT Press,
1998.

