18 research outputs found

    Bifurcation study of phase oscillator systems with attractive and repulsive interaction.

    Get PDF
    We study a model of globally coupled phase oscillators that contains two groups of oscillators with positive (synchronizing) and negative (desynchronizing) incoming connections for the first and second groups, respectively. This model was previously studied by Hong and Strogatz (the Hong-Strogatz model) in the case of a large number of oscillators. We consider a generalized Hong-Strogatz model with a constant phase shift in coupling. Our approach is based on the study of invariant manifolds and bifurcation analysis of the system. In the case of zero phase shift, various invariant manifolds are analytically described and a new dynamical mode is found. In the case of a nonzero phase shift we obtained a set of bifurcation diagrams for various systems with three or four oscillators. It is shown that in these cases system dynamics can be complex enough and include multistability and chaotic oscillations

    Winner-take-all in a phase oscillator system with adaptation.

    Get PDF
    We consider a system of generalized phase oscillators with a central element and radial connections. In contrast to conventional phase oscillators of the Kuramoto type, the dynamic variables in our system include not only the phase of each oscillator but also the natural frequency of the central oscillator, and the connection strengths from the peripheral oscillators to the central oscillator. With appropriate parameter values the system demonstrates winner-take-all behavior in terms of the competition between peripheral oscillators for the synchronization with the central oscillator. Conditions for the winner-take-all regime are derived for stationary and non-stationary types of system dynamics. Bifurcation analysis of the transition from stationary to non-stationary winner-take-all dynamics is presented. A new bifurcation type called a Saddle Node on Invariant Torus (SNIT) bifurcation was observed and is described in detail. Computer simulations of the system allow an optimal choice of parameters for winner-take-all implementation

    An interactive channel model of the Basal Ganglia: bifurcation analysis under healthy and parkinsonian conditions.

    Get PDF
    Oscillations in the basal ganglia are an active area of research and have been shown to relate to the hypokinetic motor symptoms of Parkinson's disease. We study oscillations in a multi-channel mean field model, where each channel consists of an interconnected pair of subthalamic nucleus and globus pallidus sub-populations.To study how the channels interact, we perform two-dimensional bifurcation analysis of a model of an individual channel, which reveals the critical boundaries in parameter space that separate different dynamical modes; these modes include steady-state, oscillatory, and bi-stable behaviour. Without self-excitation in the subthalamic nucleus a single channel cannot generate oscillations, yet there is little experimental evidence for such self-excitation. Our results show that the interactive channel model with coupling via pallidal sub-populations demonstrates robust oscillatory behaviour without subthalamic self-excitation, provided the coupling is sufficiently strong. We study the model under healthy and Parkinsonian conditions and demonstrate that it exhibits oscillations for a much wider range of parameters in the Parkinsonian case. In the discussion, we show how our results compare with experimental findings and discuss their possible physiological interpretation. For example, experiments have found that increased lateral coupling in the rat basal ganglia is correlated with oscillations under Parkinsonian conditions

    Multistability in the Kuramoto model with synaptic plasticity

    Get PDF
    We present a simplified phase model for neuronal dynamics with spike timing-dependent plasticity (STDP). For asymmetric, experimentally observed STDP we find multistability: a coexistence of a fully synchronized, a fully desynchronized, and a variety of cluster states in a wide enough range of the parameter space. We show that multistability can occur only for asymmetric STDP, and we study how the coexistence of synchronization and desynchronization and clustering depends on the distribution of the eigenfrequencies. We test the efficacy of the proposed method on the Kuramoto model which is, de facto, one of the sample models for a description of the phase dynamics in neuronal ensembles

    Mechanism of Desynchronization in the Finite-Dimensional Kuramoto Model

    Get PDF
    We study how a decrease of the coupling strength causes a desynchronization in the Kuramoto model of N globally coupled phase oscillators. We show that, if the natural frequencies are distributed uniformly or close to that, the synchronized state can robustly split into any number of phase clusters with different average frequencies, even culminating in complete desynchronization. In the simplest case of N=3 phase oscillators, the course of the splitting is controlled by a Cherry flow. The general N-dimensional desynchronization mechanism is numerically illustrated for N=5

    Identical phase oscillator networks: bifurcations, symmetry and reversibility for generalized coupling

    No full text
    For a system of coupled identical phase oscillators with full permutation symmetry, any broken symmetries in dynamical behaviour must come from spontaneous symmetry breaking, i.e. from the nonlinear dynamics of the system. The dynamics of phase differences for such a system depends only on the coupling (phase interaction) function g(φ)g(\varphi) and the number of oscillators NN. This paper briefly reviews some results for such systems in the case of general coupling gg before exploring two cases in detail: (a) general two harmonic form: g(φ)=qsin(φα)+rsin(2φβ)g(\varphi)=q\sin(\varphi-\alpha)+r\sin(2\varphi-\beta) and NN small (b) the coupling gg is odd or even. We extend previously published bifurcation analyses to the general two harmonic case, and show for even gg that the dynamics of phase differences has a number of time-reversal symmetries. For the case of even gg with one harmonic it is known the system has N2N-2 constants of the motion. This is true for N=4N=4 and any gg, while for N=4N=4 and more than two harmonics in gg, we show the system must have fewer independent constants of the motion

    Multistability in the Kuramoto model with synaptic plasticity

    Get PDF
    We present a simplified phase model for neuronal dynamics with spike timing-dependent plasticity (STDP). For asymmetric, experimentally observed STDP we find multistability: a coexistence of a fully synchronized, a fully desynchronized, and a variety of cluster states in a wide enough range of the parameter space. We show that multistability can occur only for asymmetric STDP, and we study how the coexistence of synchronization and desynchronization and clustering depends on the distribution of the eigenfrequencies. We test the efficacy of the proposed method on the Kuramoto model which is, de facto, one of the sample models for a description of the phase dynamics in neuronal ensembles

    The Kuramoto Model on Oriented and Signed Graphs

    No full text
    corecore