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We study how a decrease of the coupling strength causes a desynchronization in the Kuramoto model
of N globally coupled phase oscillators. We show that, if the natural frequencies are distributed
uniformly or close to that, the synchronized state can robustly split into any number of phase clusters
with different average frequencies, even culminating in complete desynchronization. In the simplest
case of N � 3 phase oscillators, the course of the splitting is controlled by a Cherry flow. The general
N-dimensional desynchronization mechanism is numerically illustrated for N � 5.
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FIG. 1. Frequency-splitting bifurcation diagrams for the
Kuramoto model from Eq. (1) with N�3 [(a),(b)] and
N�5 [(c),(d)] phase oscillators, with a nonuniform distribu-
tion of the natural frequencies !i: (a) f�0:97;�0:4;�0:2g,
(b) f�1:0;0:0;0:953g, (c) f�1:0022;�0:50446;0:00106;
0:49869;0:99804g, and (d) f�1:00064;�0:50017; 0:00347;
0:50170; 0:99852g. !i � h _ ii, where h�i denotes averaging in
time. � is the mean frequency.
Starting with the work of Winfree [1] and Kuramoto
[2], there has been growing interest in synchronization of
globally coupled limit cycle oscillators [3–8]. Possible
applications include many self-organizing systems in
physics, chemistry, biology, and medicine and range,
e.g., from Josephson junction arrays [9], semiconductor
lasers arrays [10], chemistry [11], cardiac pacemaker cells
[12], and flashing fireflies [13] to the development of
demand-controlled brain pacemakers for the therapy of
neurological and psychiatric diseases [14,15]. Funda-
mental to all such applications is to understand mecha-
nisms that cause synchronization or desynchronization.

If the coupling between limit cycle oscillators is strong
enough, in general, phase synchronization occurs: All
oscillators rotate with the same average frequency. With
decreasing coupling strength, desynchronization occurs:
The oscillators split into groups of different average
frequencies, such that inside each group the frequency is
the same. This transition is called a frequency-splitting
bifurcation. It is a common property of very different
ensembles of coupled oscillators with both local and
global coupling, characterized by regular or chaotic dy-
namics (see, e.g., [16–19], and references therein).

General properties of the phase dynamics in ensembles
of nonlinear limit cycle oscillators with weak global
coupling are described by the Kuramoto model [2]

_ i � !i �
K
N

XN

j�1

sin� j �  i�; i � 1; . . . ; N; (1)

where  i are phase variables, !i are natural frequencies,
andK > 0 is a coupling parameter. In the thermodynamic
limit N ! 1, a transition from the synchronized state to
a complete desynchronization occurs, when the strength
of the coupling decreases below a certain critical value. In
spite of numerous studies, in the finite-dimensional
Kuramoto model the desynchronization mechanism is
still far from being well understood (see, e.g., [17], and
references therein). This issue is the starting point of the
present Letter. Unlike Kuramoto, Strogatz, and others
0031-9007=04=93(8)=084102(4)$22.50 
[2,17], we do not use well-developed statistical tech-
niques. Rather, we here use a qualitatively different ap-
proach, which is based on bifurcation theory.

In system (1), the regime of complete synchronization
is destroyed when the coupling strength decreases below
K � Kc giving rise to an appearance of phase clusters. In
most cases, at the bifurcation, only one of the phase
variables  i splits off from the others, and thus only
two phase clusters arise, which contain 1 and N � 1
elements [see Fig. 1(a)]. This codimension one bifurcation
is well known for the unimodal (Gaussian) distributions
of the natural frequencies !i in the Kuramoto model [16].

The purpose of this Letter is to show that if the natural
frequencies in the Kuramoto model are distributed uni-
formly, or close to that, the number of the phase clusters
2004 The American Physical Society 084102-1
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FIG. 2. Schematic representation of the phase portraits for
Eq. (2) with �1��2��. (a) � � 0: The phase portrait con-
tains a stable nodeO, saddles S1, S2, and S3, and unstable nodes
N1 and N2. (b) �> 0 and 1:70<K=�< 3 (Cherry flow): The
phase portrait contains a stable node O, a saddle S, and an
unstable periodic orbit P, and is foliated by stable manifolds
WS

1 and WS
2 of the saddle S, as indicated by the gray regions.
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instantly emerging due to the frequency-splitting bifur-
cation at K � Kc may also be three and more, ranging
even up to complete desynchronization [see Fig. 1(b)–
1(d)]. Moreover, our results show that the frequency-
splitting bifurcation is also of codimension one in the
case where it generates multiple clusters. Thus small
parameter perturbations of the Kuramoto model do not
destroy the course of the desynchronization transition.

Based on the theory of low-dimensional dynamical
systems, we unfold the mechanism of the frequency-
splitting bifurcation by considering the simplest, non-
trivial case of only N � 3 coupled oscillators in the
Kuramoto model (1). Then, by introducing phase differ-
ence variables  2 �  1 and  3 �  2, the problems is
reduced to a flow on a two-dimensional torus, which is
a so-called Cherry flow [20–24]. Following Ref. [23], a
Cherry flow is defined as a smooth flow on a two-
dimensional torus, which has two equilibria, one being
a saddle and the other being a sink or source, and rotating
trajectories of some rotation number which is called the
winding ratio. For the Cherry flow obtained for the
Kuramoto model, the second equilibrium is a stable
node and torus rotations are unstable. During the
frequency-splitting bifurcation, the two equilibria disap-
pear in a saddle-node bifurcation, and the preexisting
unstable Cherry flow rotations capture the whole torus
volume, where they inherit the winding ratio. Then, in the
bifurcation moment K � Kc, zero Cherry flow winding
ratio induces cluster doubling; nonzero one causes cluster
tripling.

Figure 1 illustrates different types of the frequency-
splitting bifurcations of the Kuramoto model with N � 3
and N � 5. In Fig. 1(a), a standard bifurcation sequence
is plotted. With decreasing K, first, at K � Kc, complete
synchronization!1 � !2 � !3 � � turns into two clus-
ters with unequal frequencies!1 � !2 and!3. Then, at a
smaller coupling parameter value Kc1, the first cluster
!1 � !2 splits, in turn, causing a complete desynchro-
nization: !1 � !2 � !3. Both bifurcations may be re-
ferred to as cluster doubling. In Fig. 1(b) an example of a
cluster tripling is presented. The synchronous motion
breaks up at K � Kc, instantly producing three different
frequencies. Furthermore, just after the bifurcation, suc-
cessive frequency differences �1 � !2 �!1 and �2 �
!3 �!2 become locked in a 1:2 resonance: �1=�2 �
1:2. Below we will show that, depending on the parame-
ters, at the bifurcation any other resonance p:q can be
obtained in a robust way. Figures 1(c) and 1(d) refer to a
five-dimensional Kuramoto model, in which with de-
creasing coupling strength the common average fre-
quency � instantly splits into five and four clusters,
respectively. The 1:1:1:1 resonance [Fig. 1(c)] and the
1:1:0:1 resonance [Fig. 1(d)] take place for the four-
dimensional torus dynamics of the corresponding phase
differences. Irregular behavior in Figs. 1(b)–1(d) corre-
sponds to the transition through narrow resonance
tongues of different winding ratios as coupling decreases.
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To describe the mechanism of the frequency-splitting
bifurcation, consider in detail the Kuramoto model (1) for
N � 3. It can easily be reduced to the two-dimensional
system of the phase differences ’1 �  2 �  1 and ’2 �
 3 �  2:

_’1 � �1 �
K
3
sin�’2� � sin�’1 � ’2� � 2 sin�’1��;

_’2 � �2 �
K
3
sin�’1� � sin�’1 � ’2� � 2 sin�’2��;

(2)

where �1 � !2 �!1 and �2 � !3 �!2. Consider the
flow � defined by Eq. (2), which is a flow on a two-
dimensional torus T2 � 0; 2��2.

Let first �1 � �2 � 0. In that case, complete synchro-
nization takes place. The flow � possesses six equilibria,
each characterized by two Lyapunov exponents �1 and �2:
a sink at the origin O�0; 0�, with �1 � �2 � �K; three
saddles S1�0; ��, S2��; 0�, and S3��;��, with �1 � K and
�2 � �K=3; and two sources N1�2�=3; 2�=3� and
N2�4�=3; 4�=3�, with �1 � �2 � K=2 [Fig. 2(a)]. Stable
manifolds of the saddles play the role of ‘‘stoppers’’ for
the torus dynamics. Any trajectory of system (2) origi-
nating anywhere (except for the unstable equilibria and
the stable manifolds of the saddles) approaches the sinkO
without even a single rotation around the torus.

Let now �1 � �2 �
def

�> 0. Then, system (2) preserves
its symmetry with respect to the diagonal D�’1 � ’2�,
which is an invariant manifold of the torus flow �, and
Eq. (2) on it turns into

_’ � ��
K
3
sin�’� � sin�2’��; (3)

where ’�
def
’1 � ’2. For the values of � that are positive

and small enough, Eq. (3) has four equilibria O, N1, S2,
and N2. With decreasing control parameter K=�, first, S2
andN2 annihilate in an inverse saddle-node bifurcation at
K � 8:13�. Then, at K � 3� a pitchfork bifurcation
occurs, where the out of the diagonal saddles S1 and S3
084102-2
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collide with the unstable node N1, in this way producing,
instead, a saddle S.

The torus flow obtained after the pitchfork bifurcation
is an example of a Cherry flow [20–24] [see Fig. 2(b)]. It
contains two equilibria, sink O and saddle S, and an
unstable periodic orbit P. In the considered symmetrical
case, obviously, the winding ratio of the Cherry flow
equals 1:1. Indeed, along the orbit P, the torus variables
’1 and ’2 are locked in a 1:1 resonance. All other
trajectories, except for P, saddle S, and its stable mani-
folds WS

1;2 are attracted by the steady state O. Complete
synchronization is not yet destroyed.

With further decreasing coupling parameter K, the
frequency-splitting bifurcation occurs at K � 1:70�.
The stable node O and the saddle S vanish due to a
saddle-node bifurcation producing a stable periodic orbit.
In the considered symmetrical case, this reemerging sta-
ble periodic orbit coincides with the diagonal D. All
trajectories of Eq. (2) now rotate around the torus, and
their winding ratio is 1:1, as before. Hence, both phase
differences, ’1 �  2 �  1 and ’2 �  3 �  2, start to
grow, which corresponds to a desynchronization in the
original Kuramoto system in form of a cluster tripling.

The bifurcation properties obtained above for the case
of equal natural frequency differences are preserved, in
general, also if the differences �1 and �2 are different.
Figure 3(a) presents the bifurcation diagram in the pa-
rameter plane K=�2 versus �1=�2. (Without loss of gen-
erality, the case 0<�1 � �2 is considered.) The three
saddle-node bifurcation curves B1, B2, and Bc correspond
to pairwise saddle-node annihilation of the six equilibria
of Eq. (2). Above the middle bifurcation curve B2, the
torus flow � remains closed (without any rotations). The
Cherry flow exists in the hatched parameter region be-
tween the B2 and Bc curves. Its winding ratio varies
continuously with the parameters as a devil’s staircase
and may be rational or irrational. In Fig. 3(a) two main
resonant tongues are shown, with winding ratio 0:1 (light
gray) and 1:1 (dark gray). The tongues emanate from the
corner parameter points 0 and 1 of the K � 0 axis,
respectively, and end touching each other in the singular
point C � �1; 3�. All other resonant tongues, with wind-
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FIG. 3. (a) Two-parameter bifurcation diagram for Eq. (1)
with N � 3. The Cherry flow region is hatched. The main
resonant tongues 0:1, 1:3, 1:2, 2:3, 3:4, and 1:1 are shown.
(b) Enlargement from (a). Parameter variations along the
arrows in (a) and (b) correspond to the bifurcation diagrams
in Figs. 1(a) and 1(b), respectively.
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ing ratios p:q, originate from the points p=q in the K � 0
axis and are aligned in between the 0:1 and 1:1 resonant
tongues. Also, they all extend up to the singular parame-
ter point C�1; 3�, where they glue together and end.
Quasiperiodic torus rotations take place in the fractal
parameter set which complements the union of the reso-
nant tongues. This fractal parameter set appears to be
very thin: both the Lebesgue measure and the Hausdorff
dimension of it equal zero (see Refs. [21,22]). Hence, the
probability of observing a quasiperiodic Cherry flow is
negligible.

Figure 3(b) presents an enlargement of the bifurcation
diagram given by Fig. 3(a) for the region where the Bc
bifurcation curve intersects the resonant tongues. The
enlargement shows that the resonant tongues that exist
above Bc are naturally continued in the desynchroniza-
tion region below Bc. The widest tongue has a 0:1 wind-
ing ratio, which means that inside it only the second torus
variable ’2 rotates; i.e., only the second phase difference
 3 �  2 starts to grow when the parameter point inter-
sects Bc. Consequently, in that case, the frequency-
splitting bifurcation gives rise to two phase clusters
only, containing one and two oscillators, respectively
[see Fig. 1(a), where the parameter varies as indicated
by the arrow in Fig. 3(a)]. Such a type of cluster doubling
takes place for all �1=�2 <�tr, where �tr � 0:95026 is
an intersection point of the 0:1 tongue boundary with the
Bc bifurcation curve. At other parameter values, i.e., for
�1=�2 > �tr, the winding ratio of the Cherry flow does
not vanish, and thus the desynchronization transition al-
ways shows up as a cluster tripling: Both phase differ-
ences ’1 and ’2 start growing, in this way causing an
instant splitting of all three phase variables  1,  2, and
 3. This transition is illustrated in Fig. 1(b), where the pa-
rameters vary as indicated by the right arrow in Fig. 3(b).

The desynchronization transition shown in Fig. 3 ap-
pears to be more complicated if it happens near the
boundaries of the Cherry flow resonant tongues. Indeed,
as we have found, the resonant tongues contain thin
boundary layer strips, where a stable periodic orbit exists
(see [24]), which is born in a homoclinic bifurcation. In
Fig. 3(b) the homoclinic bifurcation curveH is shown as a
dashed line inside the 0:1 tongue. [Analogous homoclinic
bifurcation curves giving rise to a stable periodic orbit
can be found inside all other resonant tongues. But they
are so thin that they cannot be resolved with the given
scale in Fig. 3(b)]. Therefore, two attracting states coexist
in the sideband, i.e., the vertically hatched region between
the homoclinic bifurcation curve H and the tongue
boundary: (i) the Cherry flow steady state O and (ii) the
stable periodic orbit emerging in the homoclinic bifurca-
tion at H. As our calculations show, this sideband multi-
stability region inside the 0:1-resonant tongue is attached
to the Bc saddle-node curve, comprising an interval
�ms < �1=�2 < �tr. Then, if the desynchronization tran-
sition goes on in this interval [e.g., when K=�2 is de-
creased along the left arrow in Fig. 3(b)], synchronization
084102-3
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FIG. 4. Two-parameter bifurcation diagram for the
Kuramoto model from Eq. (1) with N � 5 and �i � 0:5, i �
2; 4. Four main resonant tongues are shown.
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and desynchronization coexist for the range of parame-
ters between H and Bc. These sideband multistability
regions extend along the boundaries of the Cherry flow
resonant tongues up to the singular parameter point
C�1; 3�. Therefore, the desynchronizing behavior in the
Kuramoto model can actually arise before the disappear-
ance of the stable phase-locked state.

We expect that this low-dimensional mechanism also
controls the frequency-splitting bifurcation in the general
N-dimensional Kuramoto model from Eq. (1). In this
case, the dynamics is reduced to an �N � 1�-dimensional
torus flow of the phase differences’i �  i�1 �  i, which
is an �N � 1�-dimensional analog of Eq. (2). For K >Kc,
synchronization is caused, generally, by a unique sink O.
When K decreases to Kc, this sink and, thus, also syn-
chronization vanish due to an inverse saddle-node bifur-
cation. For a range of the coupling parameter values
greater than Kc, some of the phase differences ’i already
display circular rotations on the �N � 1�-dimensional to-
rus (such as for the Cherry flow in dimension two). Let us
characterize these rotations by the �N � 1�-dimensional
analog of the winding ratio, r1: � � � :rN�1, which indicates
how many phase differences ’i rotate, and with which
ratio with respect to each other. When the steady state O
disappears at K � Kc, the stable torus rotations arise, in
this way causing a desynchronization. As in the three-
dimensional case, we expect the number of phase clusters
emerging in the N-dimensional frequency-splitting bifur-
cation to be equal to the number of nonzero coordinates of
the corresponding (N � 1)-dimensional winding ratio
�1. This mechanism is robust with respect to small
parameter perturbations. We conclude that the
frequency-splitting bifurcation in the Kuramoto model,
in the case where more than two phase clusters emerge, is
also of codimension one.

Figure 4 illustrates this phenomenon in the case of the
Kuramoto model from Eq. (1) with N � 5: Four main
resonant tongues 1:1:1:1, 1:0:1:1, 1:1:0:1, and 1:0:1:0 are
shown. The tongues hit the frequency-splitting bifurca-
tion curve Bc. Our results obtained forN � 3 suggest that
the tongues continue above the Bc curve in terms of a
084102-4
four-dimensional analog of the Cherry flow. However, for
N > 3, a bifurcation analysis is essentially more compli-
cated and requires additional studies. The analysis gets
more involved due to the appearance of complex dynam-
ics and chaos in high-dimensional systems. For the Kura-
moto model, chaos occurs beginning from the dimension
N � 4, as we shall present in a forthcoming study.

We greatly acknowledge fruitful and illuminating dis-
cussions with B. Fiedler, A. Pikovsky, L. P. Shilnikov,
S. Yanchuk, and M. Zaks.
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