448 research outputs found

    Novel MCM Interconnection Analysis Using Capacitive Charge Generation (CCG)

    Full text link
    A new SEM technique, Capacitive Charge Generation (CCG), has been developed to rapidly image MCM interconnection continuity. The new technique uses low primary electron beam energies (< 2.0 keV), very high beam currents (>100 nA), and fast electron beam scan rates (>5 frames/second) to probe buried conductors in MCMS. For these conditions, new surface charging effects have been observed that enable examination of conductors under thick insulating layers. CCG has been applied to conductors covered by over 90 {mu}m of polymer dielectric. The physics of CCG signal generation and applications for MCM failure analysis are described

    Efficiency of fall-banded nitrogen fertilizer in Manitoba: influence of application date, landscape position and fertilizer additives

    Get PDF
    Non-Peer ReviewedA two-year study was conducted to investigate the effects of application date, landscape position and a double inhibitor (urease and nitrification) on the efficiency of fall-banded nitrogen (N) fertilizer under Manitoba conditions. At harvest, the effects of landscape position were apparent at three of the four intensive sites, with significantly greater grain yields and total recovery of N in the high landscape positions than in the low landscape positions. Among fertilization treatments, there were no significant differences in crop response within the high landscape positions. In the low landscape positions, grain yields, total N uptake, grain yield increases and fertilizer N use efficiency were highest for the spring and late fall applications, when compared to early fall, mid fall and early fall with inhibitors. Preliminary soil analyses indicate that percent recovery of total inorganic N in the fall and spring was greater for late fall applications than for early fall, and for high as opposed to low landscape positions. However, there was little evidence of substantial disappearance of mineral N over the winter for all application dates, landscape positions, and with or without inhibitors

    Unfolding Rates for the Diffusion-Collision Model

    Full text link
    In the diffusion-collision model, the unfolding rates are given by the likelihood of secondary structural cluster dissociation. In this work, we introduce an unfolding rate calculation for proteins whose secondary structural elements are α\alpha-helices, modeled from thermal escape over a barrier which arises from the free energy in buried hydrophobic residues. Our results are in good agreement with currently accepted values for the attempt rate.Comment: Shorter version of cond-mat/0011024 accepted for publication in PR

    Phase diagram of the ferroelectric-relaxor (1-x)PbMg(1/3)Nb(2/3)O3-xPbTiO3

    Get PDF
    Synchrotron x-ray powder diffraction measurements have been performed on unpoled ceramic samples of (1-x)PbMg(1/3)Nb(2/3)O3-xPbTiO3 (PMN-xPT) with 30%<= x<= 39% as a function of temperature around the morphotropic phase boundary (MPB), which is the line separating the rhombohedral and tetragonal phases in the phase diagram. The experiments have revealed very interesting features previously unknown in this or related systems. The sharp and well-defined diffraction profiles observed at high and intermediate temperatures in the cubic and tetragonal phases, respectively, are in contrast to the broad features encountered at low temperatures. These peculiar characteristics, which are associated with the monoclinic phase of MC-type previously reported by Kiat et al and Singh et al., can only be interpreted as multiple coexisting structures with MC as the major component. An analysis of the diffraction profiles has allowed us to properly characterize the PMN-xPT phase diagram and to determine the stability region of the monoclinic phase, which extends from x= 31% to x= 37% at 20 K. The complex lansdcape of observed phases points to an energy balance between the different PMN-xPT phases which is intrinsically much more delicate than that of related systems such as PbZr(1-x)TixO3 or (1-x)PbZn(1/3)Nb(1/3)O3-xPbTiO3. These observations are in good accord with an optical study of x= 33% by Xu et al., who observed monoclinic domains with several different polar directions coexisting with rhombohedral domains, in the same single crystal.Comment: REVTeX4, 11 pages, 10 figures embedde

    Stability of the monoclinic phase in the ferroelectric perovskite PbZr(1-x)TixO3

    Get PDF
    Recent structural studies of ferroelectric PbZr(1-x)TixO3 (PZT) with x= 0.48, have revealed a new monoclinic phase in the vicinity of the morphotropic phase boundary (MPB), previously regarded as the the boundary separating the rhombohedral and tetragonal regions of the PZT phase diagram. In the present paper, the stability region of all three phases has been established from high resolution synchrotron x-ray powder diffraction measurements on a series of highly homogeneous samples with 0.42 <=x<= 0.52. At 20K the monoclinic phase is stable in the range 0.46 <=x<= 0.51, and this range narrows as the temperature is increased. A first-order phase transition from tetragonal to rhombohedral symmetry is observed only for x= 0.45. The MPB, therefore, corresponds not to the tetragonal-rhombohedral phase boundary, but instead to the boundary between the tetragonal and monoclinic phases for 0.46 <=x<= 0.51. This result provides important insight into the close relationship between the monoclinic phase and the striking piezoelectric properties of PZT; in particular, investigations of poled samples have shown that the monoclinic distortion is the origin of the unusually high piezoelectric response of PZT.Comment: REVTeX file, 7 figures embedde

    Effect of Bovine Somatotropin on Neutrophil Functions and Clinical Symptoms During Streptococcus uberis Mastitis

    Get PDF
    The effect of recombinant bovine somatotropin (bST) on the chemiluminescence, diapedesis, and expression of adhesion receptors (CD11a, CD11b, CD18) of isolated polymorphonuclear leukocytes was studied. The plasma concentrations of insulin-like growth factor-I (IGF-I), bST, cortisol, and alpha-lactalbumin were also monitored. In addition, general and local clinical symptoms and the differentiation of circulating leukocytes were also studied during experimentally induced Streptococcus uberis mastitis in cows. Ten cows were infected with 500 cfu of S. uberis O140J in both left quarters. Five cows were subcutaneously treated with 500 mg of recombinant bST 7 d before and after infection, and 5 control cows received the excipient. General (fever, tachycardia, inappetance, and depression) and local symptoms (swelling, pain, firmness, and flecks in milk) were more acute, severe, and longer-lasting in control cows. Treatment with bST had no effect on chemiluminescence and diapedesis of circulating polymorphonuclear leukocytes and no effect on the expression of adhesion receptors. Recombinant bST induced significantly higher IGF-I and bST concentrations in plasma. The leukopenia observed after infection was less pronounced in the bST-treated cows, and the number of circulating band neutrophils and metamyelocytes was significantly lower in the treated group. The concentration of cortisol did not differ between both groups, but the blood concentration of alpha-lactalbumin significantly increased in both groups from 6 d after infection. These results showed that treatment with recombinant bST improves animal welfare by protecting the cows from severe local and general clinical symptoms during subsequent S. uberis mastitis, but that it has no effect on chemiluminescence, diapedesis, and the expression of adhesion receptors of circulating polymorphonuclear leukocytes

    Deep Convective Microphysics Experiment (DCMEX) coordinated aircraft and ground observations: microphysics, aerosol, and dynamics during cumulonimbus development

    Get PDF
    Cloud feedbacks associated with deep convective anvils remain highly uncertain. In part, this uncertainty arises from a lack of understanding of how microphysical processes influence the cloud radiative effect. In particular, climate models have a poor representation of microphysics processes, thereby encouraging the collection and study of observation data to enable better representation of these processes in models. As such, the Deep Convective Microphysics Experiment (DCMEX) undertook an in situ aircraft and ground-based measurement campaign of New Mexico deep convective clouds during July–August 2022. The campaign coordinated a broad range of instrumentation measuring aerosol, cloud physics, radar, thermodynamics, dynamics, electric fields, and weather. This paper introduces the potential data user to DCMEX observational campaign characteristics, relevant instrument details, and references to more detailed instrument descriptions. Also included is information on the structure and important files in the dataset in order to aid the accessibility of the dataset to new users. Our overview of the campaign cases illustrates the complementary operational observations available and demonstrates the breadth of the campaign cases observed. During the campaign, a wide selection of environmental conditions occurred, ranging from dry, northerly air masses with low wind shear to moist, southerly air masses with high wind shear. This provided a wide range of different convective growth situations. Of 19 flight days, only 2 d lacked the formation of convective cloud. The dataset presented (https://doi.org/10.5285/B1211AD185E24B488D41DD98F957506C; Facility for Airborne Atmospheric Measurements et al., 2024) will help establish a new understanding of processes on the smallest cloud- and aerosol-particle scales and, once combined with operational satellite observations and modelling, can support efforts to reduce the uncertainty of anvil cloud radiative impacts on climate scales
    corecore