10,991 research outputs found
THE CONSEQUENCES OF AN OPEN FIELD BURNING BAN ON THE U.S. KENTUCKY BLUEGRASS SEED INDUSTRY
An econometric model of the U.S. Kentucky bluegrass seed industry in the Pacific Northwest is specified and estimated in order to evaluate the short and long run consequences of yield reductions associated with a ban on open field burning of grass residues. While results differ among regions, model simulations of short run effects of reduced yields attributed to the burning ban indicate price increases for grass seed ranging from 0 to 69 percent and long run effects indicate increased acreage of grass seed production due to producers responses to higher prices.Crop Production/Industries,
Romantic Partnerships and the Dispersion of Social Ties: A Network Analysis of Relationship Status on Facebook
A crucial task in the analysis of on-line social-networking systems is to
identify important people --- those linked by strong social ties --- within an
individual's network neighborhood. Here we investigate this question for a
particular category of strong ties, those involving spouses or romantic
partners. We organize our analysis around a basic question: given all the
connections among a person's friends, can you recognize his or her romantic
partner from the network structure alone? Using data from a large sample of
Facebook users, we find that this task can be accomplished with high accuracy,
but doing so requires the development of a new measure of tie strength that we
term `dispersion' --- the extent to which two people's mutual friends are not
themselves well-connected. The results offer methods for identifying types of
structurally significant people in on-line applications, and suggest a
potential expansion of existing theories of tie strength.Comment: Proc. 17th ACM Conference on Computer Supported Cooperative Work and
Social Computing (CSCW), 201
Molecular immunophenotyping of lungs and spleens in naive and vaccinated chickens early after pulmonary avian influenza A (H9N2) virus infection
In a respiratory-infection-model with the avian influenza A H9N2 virus we studied lung and splenic immune reactions in chickens using a recently developed 5K chicken immuno-microarray. Groups of chickens were either mock-immunized (referred to as non-immune), vaccinated with inactivated viral antigen only (immune) or with viral antigen in a water-in-oil (W/O) immunopotentiator (immune potentiated). Three weeks after vaccination all animals were given a respiratory infection. Immune potentiated birds developed inhibitory antiviral antibodies, showed minimal lung histopathology and no detectable viral sequences, while non-immune animals showed microscopic immunopathology and detectable virus. Immune birds, receiving antigen in saline only, showed minimal microscopic histopathology, and intermediate levels of virus detection. These classical features in the different groups were mirrored by overlapping or specific mRNA gene expression profiles in lungs and spleen using microarray analysis. To our knowledge this is the first study demonstrating pneumonia-associated lung pathology of the low pathogenic avian influenza H9N2 virus. Our data provide insights into the molecular interaction of this virus with its natural host when naive or primed by vaccination
Quantum hierarchic models for information processing
Both classical and quantum computations operate with the registers of bits.
At nanometer scale the quantum fluctuations at the position of a given bit,
say, a quantum dot, not only lead to the decoherence of quantum state of this
bit, but also affect the quantum states of the neighboring bits, and therefore
affect the state of the whole register. That is why the requirement of reliable
separate access to each bit poses the limit on miniaturization, i.e, constrains
the memory capacity and the speed of computation. In the present paper we
suggest an algorithmic way to tackle the problem of constructing reliable and
compact registers of quantum bits. We suggest to access the states of quantum
register hierarchically, descending from the state of the whole register to the
states of its parts. Our method is similar to quantum wavelet transform, and
can be applied to information compression, quantum memory, quantum
computations.Comment: 14 pages, LaTeX, 1 eps figur
Measurements of the methane relaxation times for application to the infrared emission models of the upper atmospheres of outer planets and Titan
The 7.8 micrometer emission from the nu(sub 4) band of methane (CH4) is a regularly observed feature in the stratosphere of all the giant planets and Titan. On Jupiter, enhancements in this emission are associated with the infrared hot spots in the auroral zone. Attempts to model this phenomenon in particular, and to understand the role of methane in general, have been hampered in part by a lack of adequate laboratory measurements of the collisional relaxation times for the nu(sub 3) and nu(sub 4) levels over the appropriate temperature range. To provide this needed data, a series of laboratory experiments were initiated. In the experimental arrangement the nu(sub3) band of methane is pumped at 3.3 micrometers using a pulsed infrared source (Nd:YAG/dye laser system equipped with a wave-length extender). The radiative lifetime of the nu(sub 3) level (approximately 37 ms) is much shorter than the nu(sub 4) lifetime (approximately 390 ms); however, a rapid V-V energy transfer rate ensures that the nu(sub 4) level is substantially populated. The photoacoustic technique is used to acquire relaxation rate information. The experiments are performed using a low-temperature, low-pressure cell. Experimental apparatus and technique are described. In addition some of the experimental difficulties associated with making these measurements are discussed and some preliminary results are presented
Developmental changes in children's facial preferences
Facial averageness, symmetry, health, and femininity are positively associated with adults' judgements of attractiveness, but little is known about the age at which preferences for individual facial traits develop. We investigated preferences for these facial traits and global attractiveness in 4- to 17-year-olds (N = 346). All age groups showed preferences for globally attractive faces. Preferences for averageness, symmetry, and health did not emerge until middle childhood and experienced apparent disruption or stasis around age 10- to 14-years; femininity was not preferred until early adulthood, and this preference was seen only in girls. Children's pubertal development was not clearly related to any facial preferences, but the results are consistent with the suggestion that early adrenal hormone release may play an activating role in mate preferences, while other constraints may delay further increases in preferences during later puberty
Stabilizing All Geometric Moduli in Heterotic Calabi-Yau Vacua
We propose a scenario to stabilize all geometric moduli - that is, the
complex structure, Kahler moduli and the dilaton - in smooth heterotic
Calabi-Yau compactifications without Neveu-Schwarz three-form flux. This is
accomplished using the gauge bundle required in any heterotic compactification,
whose perturbative effects on the moduli are combined with non-perturbative
corrections. We argue that, for appropriate gauge bundles, all complex
structure and a large number of other moduli can be perturbatively stabilized -
in the most restrictive case, leaving only one combination of Kahler moduli and
the dilaton as a flat direction. At this stage, the remaining moduli space
consists of Minkowski vacua. That is, the perturbative superpotential vanishes
in the vacuum without the necessity to fine-tune flux. Finally, we incorporate
non-perturbative effects such as gaugino condensation and/or instantons. These
are strongly constrained by the anomalous U(1) symmetries which arise from the
required bundle constructions. We present a specific example, with a consistent
choice of non-perturbative effects, where all remaining flat directions are
stabilized in an AdS vacuum.Comment: 24 pages, 2 figure
An ion ring in a linear multipole trap for optical frequency metrology
A ring crystal of ions trapped in a linear multipole trap is studied as a
basis for an optical frequency standard. The equilibrium conditions and cooling
possibilities are discussed through an analytical model and molecular dynamics
simulations. A configuration which reduces the frequency sensitivity to the
fluctuations of the number of trapped ions is proposed. The systematic shifts
for the electric quadrupole transition of calcium ions are evaluated for this
ring configuration. This study shows that a ring of 10 or 20 ions allows to
reach a short term stability better than for a single ion without introducing
limiting long term fluctuations
Integrated electrical and mechanical modelling of integrated-full-electric-propulsion systems
Integrated Full Electric Propulsion (IFEP) systems are the subject of much interest at present. Current research is focused on analysing and improving aspects of subsystem and system performance. However, there is a great need to look more widely at the `multi-physics' problem of characterising the dynamic interactions between the electrical and mechanical systems. This paper will discuss the changing nature of modelling and simulation to aid research into IFEP systems, outlining the alternative angle taken by the Advanced Marine Electrical Propulsion Systems (AMEPS) project to characterise and investigate electrical-mechanical system interactions. The paper will describe this approach and highlight the unique challenges associated with the problem, discussing the suitable methods that will be adopted to address these challenges. Finally, an overview of the present and future research opportunities facilitated via the AMEPS project will be presented
Choosing a basis that eliminates spurious solutions in k.p theory
A small change of basis in k.p theory yields a Kane-like Hamiltonian for the
conduction and valence bands of narrow-gap semiconductors that has no spurious
solutions, yet provides an accurate fit to all effective masses. The theory is
shown to work in superlattices by direct comparison with first-principles
density-functional calculations of the valence subband structure. A
reinterpretation of the standard data-fitting procedures used in k.p theory is
also proposed.Comment: 15 pages, 2 figures; v3: expanded with much new materia
- …