Both classical and quantum computations operate with the registers of bits.
At nanometer scale the quantum fluctuations at the position of a given bit,
say, a quantum dot, not only lead to the decoherence of quantum state of this
bit, but also affect the quantum states of the neighboring bits, and therefore
affect the state of the whole register. That is why the requirement of reliable
separate access to each bit poses the limit on miniaturization, i.e, constrains
the memory capacity and the speed of computation. In the present paper we
suggest an algorithmic way to tackle the problem of constructing reliable and
compact registers of quantum bits. We suggest to access the states of quantum
register hierarchically, descending from the state of the whole register to the
states of its parts. Our method is similar to quantum wavelet transform, and
can be applied to information compression, quantum memory, quantum
computations.Comment: 14 pages, LaTeX, 1 eps figur