5,374 research outputs found

    Theoretical Spectral Models of the Planet HD 209458b with a Thermal Inversion and Water Emission Bands

    Get PDF
    We find that a theoretical fit to all the HD 209458b data at secondary eclipse requires that the dayside atmosphere of HD 209458b have a thermal inversion and a stratosphere. This inversion is caused by the capture of optical stellar flux by an absorber of uncertain origin that resides at altitude. One consequence of stratospheric heating and temperature inversion is the flipping of water absorption features into emission features from the near- to the mid-infrared and we see evidence of such a water emission feature in the recent HD 209458b IRAC data of Knutson et al. In addition, an upper-atmosphere optical absorber may help explain both the weaker-than-expected Na D feature seen in transit and the fact that the transit radius at 24 μ\mum is smaller than the corresponding radius in the optical. Moreover, it may be a factor in why HD 209458b's optical transit radius is as large as it is. We speculate on the nature of this absorber and the planets whose atmospheres may, or may not, be affected by its presence.Comment: Accepted to the Astrophysical Journal Letters on August 28, 2007, six pages in emulateapj forma

    Mu and Tau Neutrino Thermalization and Production in Supernovae: Processes and Timescales

    Full text link
    We investigate the rates of production and thermalization of νμ\nu_\mu and ντ\nu_\tau neutrinos at temperatures and densities relevant to core-collapse supernovae and protoneutron stars. Included are contributions from electron scattering, electron-positron annihilation, nucleon-nucleon bremsstrahlung, and nucleon scattering. For the scattering processes, in order to incorporate the full scattering kinematics at arbitrary degeneracy, the structure function formalism developed by Reddy et al. (1998) and Burrows and Sawyer (1998) is employed. Furthermore, we derive formulae for the total and differential rates of nucleon-nucleon bremsstrahlung for arbitrary nucleon degeneracy in asymmetric matter. We find that electron scattering dominates nucleon scattering as a thermalization process at low neutrino energies (ϵν10\epsilon_\nu\lesssim 10 MeV), but that nucleon scattering is always faster than or comparable to electron scattering above ϵν10\epsilon_\nu\simeq10 MeV. In addition, for ρ1013\rho\gtrsim 10^{13} g cm3^{-3}, T14T\lesssim14 MeV, and neutrino energies 60\lesssim60 MeV, nucleon-nucleon bremsstrahlung always dominates electron-positron annihilation as a production mechanism for νμ\nu_\mu and ντ\nu_\tau neutrinos.Comment: 29 pages, LaTeX (RevTeX), 13 figures, submitted to Phys. Rev. C. Also to be found at anonymous ftp site http://www.astrophysics.arizona.edu; cd to pub/thompso

    Strong Water Absorption in the Dayside Emission Spectrum of the Planet HD 189733b

    Full text link
    Recent observations of the extrasolar planet HD 189733b did not reveal the presence of water in the emission spectrum of the planet. Yet models of such 'Hot Jupiter' planets predict an abundance of atmospheric water vapour. Validating and constraining these models is crucial for understanding the physics and chemistry of planetary atmospheres in extreme environments. Indications of the presence of water in the atmosphere of HD 189733b have recently been found in transmission spectra, where the planet's atmosphere selectively absorbs the light of the parent star, and in broadband photometry. Here we report on the detection of strong water absorption in a high signal-to-noise, mid-infrared emission spectrum of the planet itself. We find both a strong downturn in the flux ratio below 10 microns and discrete spectral features that are characteristic of strong absorption by water vapour. The differences between these and previous observations are significant and admit the possibility that predicted planetary-scale dynamical weather structures might alter the emission spectrum over time. Models that match the observed spectrum and the broadband photometry suggest that heat distribution from the dayside to the night side is weak. Reconciling this with the high night side temperature will require a better understanding of atmospheric circulation or possible additional energy sources.Comment: 11 pages, 1 figure, published in Natur

    Theoretical Support for the Hydrodynamic Mechanism of Pulsar Kicks

    Get PDF
    The collapse of a massive star's core, followed by a neutrino-driven, asymmetric supernova explosion, can naturally lead to pulsar recoils and neutron star kicks. Here, we present a two-dimensional, radiation-hydrodynamic simulation in which core collapse leads to significant acceleration of a fully-formed, nascent neutron star (NS) via an induced, neutrino-driven explosion. During the explosion, a ~10% anisotropy in the low-mass, high-velocity ejecta lead to recoil of the high-mass neutron star. At the end of our simulation, the NS has achieved a velocity of ~150 km s1^{-1} and is accelerating at ~350 km s2^{-2}, but has yet to reach the ballistic regime. The recoil is due almost entirely to hydrodynamical processes, with anisotropic neutrino emission contributing less than 2% to the overall kick magnitude. Since the observed distribution of neutron star kick velocities peaks at ~300-400 km s1^{-1}, recoil due to anisotropic core-collapse supernovae provides a natural, non-exotic mechanism with which to obtain neutron star kicks.Comment: Replaced with Phys. Rev. D accepted versio

    Distances to the high galactic latitude molecular clouds G192-67 and MBM 23-24

    Get PDF
    We report on distance determinations for two high Galactic latitude cloud complexes, G192-67 and MBM 23-24. No distance determination exists in the literature for either cloud. Thirty-four early type stars were observed towards the two clouds, more than half of which have parallaxes measured by the Hipparcos satellite. For the remaining stars we have made spectroscopic distance estimates. The data consist of high resolution echelle spectra centered on the Na I D lines, and were obtained over six nights at the Coude Feed telescope at Kitt Peak National Observatory. Interstellar absorption lines were detected towards some of the stars, enabling estimates of the distances to the clouds of 109 +/- 14 pc for G192-67, and of 139 +/- 33 pc for MBM 23-24. We discuss the relationship of these clouds to other ISM features such as the Local Hot Bubble and the local cavity in neutral hydrogen.Comment: 15 pages, 6 embedded figures, to be published in the ApJ Vol. 516, No.

    Limits to differences in active and passive charges

    Get PDF
    We explore consequences of a hypothetical difference between active charges, which generate electric fields, and passive charges, which respond to them. A confrontation to experiments using atoms, molecules, or macroscopic matter yields limits on their fractional difference at levels down to 10^-21, which at the same time corresponds to an experimental confirmation of Newtons third law.Comment: 6 pages Revtex. To appear in Phys. Rev.

    New Insights on the Photochromism of 2-(2‘,4‘-Dinitrobenzyl)pyridine

    Get PDF
    The photochromic behavior of 2-(2‘,4‘-dinitrobenzyl)pyridine (α-DNBP) has been followed in poly(methyl methacrylate) (PMMA) films and benzene solutions to clarify the behavior of a precursor state, previously identified in studies on crystalline α-DNBP at low temperatures. In PMMA films, photolysis at temperatures ≤50 K led to the concurrent formation of a NH tautomer and a colorless intermediate, which was stable for several hours. On irradiation at low temperatures and warming the sample, the colorless intermediate was seen to react to produce the NH tautomer in a higher yield than that found in the direct photolysis. Further information on this intermediate has come from flash photolysis studies in benzene solution, in which a new transient absorption has been observed at 335 nm and assigned to this species. This decays within a few microseconds at room temperature to form an OH tautomer, which then interconverts to the NH tautomer. The precursor state is not quenched by oxygen or naphthalene. From consideration of the kinetic and spectral data, it is suggested that this new species corresponds to a nonrelaxed tautomeric form of the OH state of α-DNBP

    2D Multi-Angle, Multi-Group Neutrino Radiation-Hydrodynamic Simulations of Postbounce Supernova Cores

    Get PDF
    We perform axisymmetric (2D) multi-angle, multi-group neutrino radiation-hydrodynamic calculations of the postbounce phase of core-collapse supernovae using a genuinely 2D discrete-ordinate (S_n) method. We follow the long-term postbounce evolution of the cores of one nonrotating and one rapidly-rotating 20-solar-mass stellar model for ~400 milliseconds from 160 ms to ~550 ms after bounce. We present a multi-D analysis of the multi-angle neutrino radiation fields and compare in detail with counterpart simulations carried out in the 2D multi-group flux-limited diffusion (MGFLD) approximation to neutrino transport. We find that 2D multi-angle transport is superior in capturing the global and local radiation-field variations associated with rotation-induced and SASI-induced aspherical hydrodynamic configurations. In the rotating model, multi-angle transport predicts much larger asymptotic neutrino flux asymmetries with pole to equator ratios of up to ~2.5, while MGFLD tends to sphericize the radiation fields already in the optically semi-transparent postshock regions. Along the poles, the multi-angle calculation predicts a dramatic enhancement of the neutrino heating by up to a factor of 3, which alters the postbounce evolution and results in greater polar shock radii and an earlier onset of the initially rotationally weakened SASI. In the nonrotating model, differences between multi-angle and MGFLD calculations remain small at early times when the postshock region does not depart significantly from spherical symmetry. At later times, however, the growing SASI leads to large-scale asymmetries and the multi-angle calculation predicts up to 30% higher average integral neutrino energy deposition rates than MGFLD.Comment: 20 pages, 21 figures. Minor revisions. Accepted for publication in ApJ. A version with high-resolution figures may be obtained from http://www.stellarcollapse.org/papers/Ott_et_al2008_multi_angle.pd

    Features of the Acoustic Mechanism of Core-Collapse Supernova Explosions

    Get PDF
    In the context of 2D, axisymmetric, multi-group, radiation/hydrodynamic simulations of core-collapse supernovae over the full 180^{\circ} domain, we present an exploration of the progenitor dependence of the acoustic mechanism of explosion. All progenitor models we have tested with our Newtonian code explode. We investigate the roles of the Standing-Accretion-Shock-Instability (SASI), the excitation of core g-modes, the generation of core acoustic power, the ejection of matter with r-process potential, the wind-like character of the explosion, and the fundamental anisotropy of the blasts. We find that the breaking of spherical symmetry is central to the supernova phenomenon and the blasts, when top-bottom asymmetric, are self-collimating. We see indications that the initial explosion energies are larger for the more massive progenitors, and smaller for the less massive progenitors, and that the neutrino contribution to the explosion energy may be an increasing function of progenitor mass. The degree of explosion asymmetry we obtain is completely consistent with that inferred from the polarization measurements of Type Ic supernovae. Furthermore, we calculate for the first time the magnitude and sign of the net impulse on the core due to anisotropic neutrino emission and suggest that hydrodynamic and neutrino recoils in the context of our asymmetric explosions afford a natural mechanism for observed pulsar proper motions. [abridged]Comment: Accepted to the Astrophysical Journal, 23 pages in emulateapj format, including 12 figure

    Pulsational Analysis of the Cores of Massive Stars and its Relevance to Pulsar Kicks

    Full text link
    The mechanism responsible for the natal kicks of neutron stars continues to be a challenging problem. Indeed, many mechanisms have been suggested, and one hydrodynamic mechanism may require large initial asymmetries in the cores of supernova progenitor stars. Goldreich, Lai, & Sahrling (1997) suggested that unstable g-modes trapped in the iron (Fe) core by the convective burning layers and excited by the ϵ\epsilon-mechanism may provide the requisite asymmetries. We perform a modal analysis of the last minutes before collapse of published core structures and derive eigenfrequencies and eigenfunctions, including the nonadiabatic effects of growth by nuclear burning and decay by both neutrino and acoustic losses. In general, we find two types of g-modes: inner-core g-modes, which are stabilized by neutrino losses and outer-core g-modes which are trapped near the burning shells and can be unstable. Without exception, we find at least one unstable g-mode for each progenitor in the entire mass range we consider, 11 M_{\sun} to 40 M_{\sun}. More importantly, we find that the timescales for growth and decay are an order of magnitude or more longer than the time until the commencement of core collapse. We conclude that the ϵ\epsilon-mechanism may not have enough time to significantly amplify core g-modes prior to collapse.Comment: 32 pages including 12 color figures and 2 tables, submitted to Ap
    corecore