1,712 research outputs found

    Determining the venting efficiency of simple chimneys for buoyant plumes

    Get PDF
    We present preliminary results from an examination of the capture and venting of a buoyant plume by a chimney. The aim is to enable improved management of indoor pollutant sources – for instance, the plume rising from a cooking pan in a kitchen or a cooking fire in a hut. Using the principle of dynamic similarity, we precise ly and controllably model the behaviour of indoor plumes by using saline solutions ejected into an enclosure containing freshwater. These well - established laboratory analogue techniques enable the location and concentration of tracer in the plume to be eas ily tracked, reflecting the evolution of pollutants carried in the plume. Focusing on a plume within a room containing a quiescent ambient environment, we identify two physical mechanisms potentially responsible for driving the removal of pollutants. The f irst, we describe as the capture of the plume, a process driven by the direct interaction between the plume and the evacuation opening; the second, we describe as the draining flow driven by a buoyant layer of fluid which may accumulate at the ceiling and is then evacuated through the effects of buoyancy. We first demonstrate that the addition of a simple cylindrical chimney that hangs downwards from an opening in the (analogue) ceiling increases the venting efficiency of these potentially polluting plumes. We go on to examine how the capture efficiency of these simple chimneys varies as the relative size of the plume and the chimney are altered, and demonstrate that simple model can provide predictions of the observed variation in capture efficiency

    Exploring positive adjustment in people with spinal cord injury.

    Get PDF
    This study explored adjustment in people with spinal cord injury; data from four focus groups are presented. Thematic analysis revealed four themes, managing goals and expectations, comparison with others, feeling useful and acceptance, showing participants positively engaged in life, positively interpreted social comparison information and set realistic goals and expectations. These positive strategies show support for adjustment theories, such as the Cognitive Adaptation Theory, the Control Process Theory and Response Shift Theory. These results also provide insight into the adjustment process of a person with spinal cord injury and may be useful in tailoring support during rehabilitation

    Atlanta ariejansseni, a new species of shelled heteropod from the Southern Subtropical Convergence Zone (Gastropoda, Pterotracheoidea)

    Get PDF
    The Atlantidae (shelled heteropods) is a family of microscopic aragonite shelled holoplanktonic gastropods with a wide biogeographical distribution in tropical, sub-tropical and temperate waters. The aragonite shell and surface ocean habitat of the atlantids makes them particularly susceptible to ocean acidification and ocean warming, and atlantids are likely to be useful indicators of these changes. However, we still lack fundamental information on their taxonomy and biogeography, which is essential for monitoring the effects of a changing ocean. Integrated morphological and molecular approaches to taxonomy have been employed to improve the assessment of species boundaries, which give a more accurate picture of species distributions. Here a new species of atlantid heteropod is described based on shell morphology, DNA barcoding of the Cytochrome Oxidase I gene, and biogeography. All specimens of Atlanta ariejansseni sp. n. were collected from the Southern Subtropical Convergence Zone of the Atlantic and Indo-Pacific oceans suggesting that this species has a very narrow latitudinal distribution (37–48°S). Atlanta ariejansseni sp. n. was found to be relatively abundant (up to 2.3 specimens per 1000 m3 water) within this narrow latitudinal range, implying that this species has adapted to the specific conditions of the Southern Subtropical Convergence Zone and has a high tolerance to the varying ocean parameters in this region

    Network of recurrent events for the Olami-Feder-Christensen model

    Full text link
    We numerically study the dynamics of a discrete spring-block model introduced by Olami, Feder and Christensen (OFC) to mimic earthquakes and investigate to which extent this simple model is able to reproduce the observed spatiotemporal clustering of seismicty. Following a recently proposed method to characterize such clustering by networks of recurrent events [Geophys. Res. Lett. {\bf 33}, L1304, 2006], we find that for synthetic catalogs generated by the OFC model these networks have many non-trivial statistical properties. This includes characteristic degree distributions -- very similar to what has been observed for real seismicity. There are, however, also significant differences between the OFC model and earthquake catalogs indicating that this simple model is insufficient to account for certain aspects of the spatiotemporal clustering of seismicity.Comment: 11 pages, 16 figure

    Sequential Composition of Dynamically Dexterous Robot Behaviors

    Get PDF
    We report on our efforts to develop a sequential robot controller-composition technique in the context of dexterous “batting” maneuvers. A robot with a flat paddle is required to strike repeatedly at a thrown ball until the ball is brought to rest on the paddle at a specified location. The robot’s reachable workspace is blocked by an obstacle that disconnects the free space formed when the ball and paddle remain in contact, forcing the machine to “let go” for a time to bring the ball to the desired state. The controller compositions we create guarantee that a ball introduced in the “safe workspace” remains there and is ultimately brought to the goal. We report on experimental results from an implementation of these formal composition methods, and present descriptive statistics characterizing the experiments.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/67990/2/10.1177_02783649922066385.pd

    Functional Electrical Stimulation mediated by Iterative Learning Control and 3D robotics reduces motor impairment in chronic stroke

    Get PDF
    Background: Novel stroke rehabilitation techniques that employ electrical stimulation (ES) and robotic technologies are effective in reducing upper limb impairments. ES is most effective when it is applied to support the patients’ voluntary effort; however, current systems fail to fully exploit this connection. This study builds on previous work using advanced ES controllers, and aims to investigate the feasibility of Stimulation Assistance through Iterative Learning (SAIL), a novel upper limb stroke rehabilitation system which utilises robotic support, ES, and voluntary effort. Methods: Five hemiparetic, chronic stroke participants with impaired upper limb function attended 18, 1 hour intervention sessions. Participants completed virtual reality tracking tasks whereby they moved their impaired arm to follow a slowly moving sphere along a specified trajectory. To do this, the participants’ arm was supported by a robot. ES, mediated by advanced iterative learning control (ILC) algorithms, was applied to the triceps and anterior deltoid muscles. Each movement was repeated 6 times and ILC adjusted the amount of stimulation applied on each trial to improve accuracy and maximise voluntary effort. Participants completed clinical assessments (Fugl-Meyer, Action Research Arm Test) at baseline and post-intervention, as well as unassisted tracking tasks at the beginning and end of each intervention session. Data were analysed using t-tests and linear regression. Results: From baseline to post-intervention, Fugl-Meyer scores improved, assisted and unassisted tracking performance improved, and the amount of ES required to assist tracking reduced. Conclusions: The concept of minimising support from ES using ILC algorithms was demonstrated. The positive results are promising with respect to reducing upper limb impairments following stroke, however, a larger study is required to confirm this

    A comparison of line-sources of buoyancy placed near and far from a wall

    No full text
    Experiments are presented on turbulent buoyant free - line and wall plumes, whereby the buoyancy source is emitted from a horizontal line source, in one case free of the presence of a wall and in the other placed immediately adjacent to a wall. The dynamics of turbulent entrainment, whereby ambie nt fluid is mixed in to the plume, are explored. The velocity field and scalar edge of the plumes are measur ed. From this the time - averaged plume - width and volume flux are compared. The spreading rate, and therefo re the entrainment, of the wall plume is fo und to be half that of the free - line plume, indicating that the wall has a signif icant effect on the entrainment process. Further, the volume flux of the wall plume is found to be half that of the free - line plume, indicating that larger maximum scalar conc entrations are present in the wall plume. The effect that the reduced entrainment rate has on a typical heated room, via a line source of buoyancy, is demonstrated by comparing a numerical model of the develo ping temperature stratification within a sealed enclosure in the case of the line source near a wall and away from a wall , where in particular it is found that higher maximum temperatures are present for the case of the line source near a wall

    Global weather forecasting

    Get PDF

    Missing physics in stick-slip dynamics of a model for peeling of an adhesive tape

    Full text link
    It is now known that the equations of motion for the contact point during peeling of an adhesive tape mounted on a roll introduced earlier are singular and do not support dynamical jumps across the two stable branches of the peel force function. By including the kinetic energy of the tape in the Lagrangian, we derive equations of motion that support stick-slip jumps as a natural consequence of the inherent dynamics. In the low mass limit, these equations reproduce solutions obtained using a differential-algebraic algorithm introduced for the earlier equations. Our analysis also shows that mass of the ribbon has a strong influence on the nature of the dynamics.Comment: Accepted for publication in Phys. Rev. E (Rapid Communication

    Prediction Possibility in the Fractal Overlap Model of Earthquakes

    Full text link
    The two-fractal overlap model of earthquake shows that the contact area distribution of two fractal surfaces follows power law decay in many cases and this agrees with the Guttenberg-Richter power law. Here, we attempt to predict the large events (earthquakes) in this model through the overlap time-series analysis. Taking only the Cantor sets, the overlap sizes (contact areas) are noted when one Cantor set moves over the other with uniform velocity. This gives a time series containing different overlap sizes. Our numerical study here shows that the cumulative overlap size grows almost linearly with time and when the overlapsizes are added up to a pre-assigned large event (earthquake) and then reset to `zero' level, the corresponding cumulative overlap sizes grows upto some discrete (quantised) levels. This observation should help to predict the possibility of `large events' in this (overlap) time series.Comment: 6 pages, 6 figures. To be published as proc. NATO conf. CMDS-10, Soresh, Israel, July 2003. Eds. D. J. Bergman & E. Inan, KLUWER PUB
    corecore