79 research outputs found

    Noise Reduction in the Swept Sine Identification Procedure of Nonlinear Systems

    Get PDF
    The Hammerstein model identification technique based on swept sine excitation signals proved in numerous applications to be particularly effective for the definition of a model for nonlinear systems. In this paper we address the problem of the robustness of this model parameter estimation procedure in the presence of noise in the measurement step. The relationship between the different functions that enter the identification procedure is analyzed to assess how the presence of additive noise affects model parameters estimation. This analysis allows us to propose an original technique to mitigate the effects of additive noise in order to improve the accuracy of model parameters estimation. The different aspects addressed in the paper and the technique for mitigating the effects of noise on the accuracy of parameter estimation are verified on both synthetic and experimental data acquired with an ultrasonic system. The results of both simulations and experiments on laboratory data confirm the correctness of the assumptions made and the effectiveness of the proposed mitigation methodology

    Early Detection of Defects through the Identification of Distortion Characteristics in Ultrasonic Responses

    Get PDF
    Ultrasonic techniques are widely used for the detection of defects in solid structures. They are mainly based on estimating the impulse response of the system and most often refer to linear models. High-stress conditions of the structures may reveal non-linear aspects of their behavior caused by even small defects due to ageing or previous severe loading: consequently, models suitable to identify the existence of a non-linear input-output characteristic of the system allow to improve the sensitivity of the detection procedure, making it possible to observe the onset of fatigue-induced cracks and/or defects by highlighting the early stages of their formation. This paper starts from an analysis of the characteristics of a damage index that has proved effective for the early detection of defects based on their non-linear behavior: it is based on the Hammerstein model of the non-linear physical system. The availability of this mathematical model makes it possible to derive from it a number of different global parameters, all of which are suitable for highlighting the onset of defects in the structure under examination, but whose characteristics can be very different from each other. In this work, an original damage index based on the same Hammerstein model is proposed. We report the results of several experiments showing that our proposed damage index has a much higher sensitivity even for small defects. Moreover, extensive tests conducted in the presence of different levels of additive noise show that the new proposed estimator adds to this sensitivity feature a better estimation stability in the presence of additive noise

    Comparison of optimisation strategies for the improvement of depth detection capability of Pulse-Compression Thermography

    Get PDF
    In Pulse Compression Thermography, the impulse response of the sample under test is retrieved pixelwise by applying a proper matched filter on the set of acquired thermal images obtained by stimulating the system with a heat source amplitude-modulated by a proper coded signal. Linear frequency modulated chirp signals and binary codes are the most employed coded excitations, and to improve the detection capability of the technique, a non-linear frequency modulated chirp signal can be used to deliver more energy to the sample in a frequency range of interest. In this work, we report the application of an exponential chirp to modulate the heating source and we compare it with a standard linear chirp excitation. To do a fair comparison, various windowing functions have been applied on the matched filters to reduce range sidelobes, thus enhancing the retrieved impulse response quality. It is shown that the combined use of an exponential chirp and an appropriate matched filter obtained by exploiting the Reactance Transform window, provides a faithful reconstruction of the sample impulse response and an enhanced signal-to-noise ratio with respect to the use of linear chirp. This has been demonstrated on a 3D-printed polymethylmethacrylate (PMMA) sample containing sixteen flat-bottom holes of different depths

    From Chirps to Random-FM Excitations in Pulse Compression Ultrasound Systems

    Full text link
    Pulse compression is often practiced in ultrasound Non Destructive Testing (NDT) systems using chirps. However, chirps are inadequate for setups where multiple probes need to operate concurrently in Multiple Input Multiple Output (MIMO) arrangements. Conversely, many coded excitation systems designed for MIMO miss some chirp advantages (constant envelope excitation, easiness of bandwidth control, etc.) and may not be easily implemented on hardware originally conceived for chirp excitations. Here, we propose a system based on random-FM excitations, capable of enabling MIMO with minimal changes with respect to a chirp-based setup. Following recent results, we show that random-FM excitations retain many advantages of chirps and provide the ability to frequency-shape the excitations matching the transducers features.Comment: 4 pages, 4 figures. Post-print from conference proceedings. Note that paper in conference proceedings at http://dx.doi.org/10.1109/ULTSYM.2012.0117 has some rendering issue

    Electrical detection of single magnetic skyrmion at room temperature

    Get PDF
    This paper proposes a protocol for the electrical detection of a magnetic skyrmion via the change of the tunneling magnetoresistive (TMR) signal in a three-terminal device. This approach combines alternating spin-transfer torque from both spin-filtering (due to a perpendicular polarizer) and spin-Hall effect with the TMR signal. Micromagnetic simulations, used to test and verify such working principle, show that there exists a frequency region particularly suitable for this achievement. This result can be at the basis of the design of a TMR based read-out for skyrmion detection, overcoming the difficulties introduced by the thermal drift of the skyrmion once nucleated

    An experimental comparison of complex excitation sequences for eddy current testing

    Get PDF
    Eddy Current Testing (ECT) is a Non Destructive technique widely used in many industrial application fields in which it is very important to detect the presence of thin defects (generally called cracks) in conductive materials. Features of this technique are the cost-effective implementation and the kind of retrieved measured data that make possible to estimate the geometrical characteristics of a crack as position, length, width and depth. The analysis of these characteristics allows the user to accept or discard realized components then improving the production chain. To accomplish for this task some aspects have to be taken into account during the measurement process. They mainly concern the realization of suitable measurement setup and post processing stages. As far as the measurement setup is concerned, crucial aspects are the choice of measurement and excitation devices. The choice of optimized excitation devices and strategies is of interest for research on Non Destructive ECT (ND-ECT): together with common aspects as the amplitude and the frequency of the exciting signal, the attention has been paid to issues as the type of signal to be adopted. In particular it has been found as the use of complex excitation signals, meant as signals different from the sinusoidal ones and with wide frequency content, might raise eddy current responses trying to support the measurement, detection and characterization stages when "difficult cases" are explored (i.e. very small and/or annealed cracks). In this paper the authors propose an experimental comparison of different excitation signals designed to improve the quality of experimental data when difficult cases are experienced and, consequently, to obtain a more reliable extraction of defects geometrical features

    Ultrasonic propagation in highly attenuating insulation materials

    Get PDF
    Experiments have been performed to demonstrate that ultrasound in the 100−400 kHz frequency range can be used to propagate signals through various types of industrial insulation. This is despite the fact that they are highly attenuating to ultrasonic signals due to scattering and viscoelastic effects. The experiments used a combination of piezocomposite transducers and pulse compression processing. This combination allowed signal-to-noise levels to be enhanced so that signals reflected from the surface of an insulated and cladded steel pipe could be obtained

    Trapped air metamaterial concept for ultrasonic sub-wavelength imaging in water

    Get PDF
    Funding for this work was provided through the UK Engineering and Physical Sciences Research Council (EPSRC), Grant Numbers EP/N034163/1, EP/N034201/1 and EP/N034813/1.Acoustic metamaterials constructed from conventional base materials can exhibit exotic phenomena not commonly found in nature, achieved by combining geometrical and resonance effects. However, the use of polymer-based metamaterials that could operate in water is difficult, due to the low acoustic impedance mismatch between water and polymers. Here we introduce the concept of “trapped air” metamaterial, fabricated via vat photopolymerization, which makes ultrasonic sub-wavelength imaging in water using polymeric metamaterials highly effective. This concept is demonstrated for a holey-structured acoustic metamaterial in water at 200–300 kHz, via both finite element modelling and experimental measurements, but it can be extended to other types of metamaterials. The new approach, which outperforms the usual designs of these structures, indicates a way forward for exploiting additive-manufacturing for realising polymer-based acoustic metamaterials in water at ultrasonic frequencies.Publisher PDFPeer reviewe
    • 

    corecore