53 research outputs found

    Ising magnetism and ferroelectricity in Ca3_3CoMnO6_6

    Full text link
    The origin of both the Ising chain magnetism and ferroelectricity in Ca3_3CoMnO6_6 is studied by abab initioinitio electronic structure calculations and x-ray absorption spectroscopy. We find that Ca3_3CoMnO6_6 has the alternate trigonal prismatic Co2+^{2+} and octahedral Mn4+^{4+} sites in the spin chain. Both the Co2+^{2+} and Mn4+^{4+} are in the high spin state. In addition, the Co2+^{2+} has a huge orbital moment of 1.7 μB\mu_B which is responsible for the significant Ising magnetism. The centrosymmetric crystal structure known so far is calculated to be unstable with respect to exchange striction in the experimentally observed \uparrow\uparrow\downarrow\downarrow antiferromagnetic structure for the Ising chain. The calculated inequivalence of the Co-Mn distances accounts for the ferroelectricity.Comment: 4 pages, 3 figures, PRL in press (changes made upon referees comments

    The spin state transition in LaCoO3_{3}; revising a revision

    Get PDF
    Using soft x-ray absorption spectroscopy and magnetic circular dichroism at the Co-L2,3L_{2,3} edge we reveal that the spin state transition in LaCoO3_{3} can be well described by a low-spin ground state and a triply-degenerate high-spin first excited state. From the temperature dependence of the spectral lineshapes we find that LaCoO3_{3} at finite temperatures is an inhomogeneous mixed-spin-state system. Crucial is that the magnetic circular dichroism signal in the paramagnetic state carries a large orbital momentum. This directly shows that the currently accepted low-/intermediate-spin picture is at variance. Parameters derived from these spectroscopies fully explain existing magnetic susceptibility, electron spin resonance and inelastic neutron data

    Orbital order in La0.5Sr1.5MnO4: beyond a common local Jahn-Teller picture

    Full text link
    The standard way to find the orbital occupation of Jahn-Teller (JT) ions is to use structural data, with the assumption of a one-to-one correspondence between the orbital occupation and the associated JT distortion, e.g. in O6 octahedron. We show, however, that this approach in principle does not work for layered systems. Specifically, using the layered manganite La0.5Sr1.5MnO4 as an example, we found from our x-ray absorption measurements and theoretical calculations, that the type of orbital ordering strongly contradicts the standard local distortion approach for the Mn3+O6 octahedra, and that the generally ignored long-range crystal field effect and anisotropic hopping integrals are actually crucial to determine the orbital occupation. Our findings may open a pathway to control of the orbital state in multilayer systems and thus of their physical properties.Comment: 4+ pages, 4 figure

    Spin blockade, orbital occupation and charge ordering in La_(1.5)Sr_(0.5)CoO4

    Full text link
    Using Co-L_(2,3) and O-K x-ray absorption spectroscopy, we reveal that the charge ordering in La_(1.5)Sr_(0.5)CoO4 involves high spin (S=3/2) Co^2+ and low spin (S=0) Co^3+ ions. This provides evidence for the spin blockade phenomenon as a source for the extremely insulating nature of the La_(2-x)Sr_(x)CoO4 series. The associated e_g^2 and e_g^0 orbital occupation accounts for the large contrast in the Co-O bond lengths, and in turn, the high charge ordering temperature. Yet, the low magnetic ordering temperature is naturally explained by the presence of the non-magnetic (S=0) Co^3+ ions. From the identification of the bands we infer that La_(1.5)Sr_(0.5)CoO4 is a narrow band material.Comment: 5 pages, 3 figure

    Local electronic structure and magnetic properties of LaMn0.5Co0.5O3 studied by x-ray absorption and magnetic circular dichroism spectroscopy

    Full text link
    We have studied the local electronic structure of LaMn0.5Co0.5O3 using soft-x-ray absorption spectroscopy at the Co-L_3,2 and Mn-L_3,2 edges. We found a high-spin Co^{2+}--Mn^{4+} valence state for samples with the optimal Curie temperature. We discovered that samples with lower Curie temperatures contain low-spin nonmagnetic Co^{3+} ions. Using soft-x-ray magnetic circular dichroism we established that the Co^{2+} and Mn^{4+} ions are ferromagnetically aligned. We revealed also that the Co^{2+} ions have a large orbital moment: m_orb/m_spin ~ 0.47. Together with model calculations, this suggests the presence of a large magnetocrystalline anisotropy in the material and predicts a non-trivial temperature dependence for the magnetic susceptibility.Comment: 8 pages, 7 figure

    Valence, spin, and orbital state of the Co ions in the one-dimensional Ca3Co2O6: an x-ray absorption and magnetic circular dichroism study

    Get PDF
    We have investigated the valence, spin, and orbital state of the Co ions in the one-dimensional cobaltate Ca3Co2O6 using x-ray absorption and x-ray magnetic circular dichroism at the Co-L2,3 edges. The Co ions at both the octahedral Co_oct and trigonal Co_trig sites are found to be in a 3+ state. From the analysis of the dichroism we established a low-spin state for the Co_oct and a high-spin state with an anomalously large orbital moment of 1.7 muB at the Co3+ trig ions. This large orbital moment along the c-axis chain and the unusually large magnetocrystalline anisotropy can be traced back to the double occupancy of the d2 orbital in trigonal crystal field.Comment: 5 pages, 4 figure

    Orbitally driven spin-singlet dimerization in SS=1 La4_{4}Ru2_{2}O10_{10}

    Get PDF
    Using x-ray absorption spectroscopy at the Ru-L2,3L_{2,3} edge we reveal that the Ru4+^{4+} ions remain in the SS=1 spin state across the rare 4d-orbital ordering transition and spin-gap formation. We find using local spin density approximation + Hubbard U (LSDA+U) band structure calculations that the crystal fields in the low temperature phase are not strong enough to stabilize the SS=0 state. Instead, we identify a distinct orbital ordering with a significant anisotropy of the antiferromagnetic exchange couplings. We conclude that La4_{4}Ru2_{2}O10_{10} appears to be a novel material in which the orbital physics drives the formation of spin-singlet dimers in a quasi 2-dimensional SS=1 system.Comment: 5 pages, 4 figures, and 1 tabl

    Crystal-field level inversion in lightly Mn-doped Sr3Ru2O7

    Full text link
    Sr3(Ru1-xMnx)2O7, in which 4d-Ru is substituted by the more localized 3d-Mn, is studied by x-ray dichroism and spin-resolved density functional theory. We find that Mn impurities do not exhibit the same 4+ valence of Ru, but act as 3+ acceptors; the extra eg electron occupies the in-plane 3dx2-y2 orbital instead of the expected out-of-plane 3d3z2-r2. We propose that the 3d-4d interplay, via the ligand oxygen orbitals, is responsible for this crystal-field level inversion and the material's transition to an antiferromagnetic, possibly orbitally-ordered, low-temperature state.Comment: A high-resolution version can be found at http://www.physics.ubc.ca/~quantmat/ARPES/PUBLICATIONS/Articles/MnSr3Ru2O7_XAS.pd

    X-ray absorption and x-ray magnetic dichroism study on Ca3CoRhO6 and Ca3FeRhO6

    Full text link
    Using x-ray absorption spectroscopy at the Rh-L_2,3, Co-L_2,3, and Fe-L_2,3 edges, we find a valence state of Co^2+/Rh^4+ in Ca3CoRhO6 and of Fe^3+/Rh^3+ in Ca3FeRhO6. X-ray magnetic circular dichroism spectroscopy at the Co-L_2,3 edge of Ca3CoRhO6 reveals a giant orbital moment of about 1.7mu_B, which can be attributed to the occupation of the minority-spin d_0d_2 orbital state of the high-spin Co^2+ (3d^7) ions in trigonal prismatic coordination. This active role of the spin-orbit coupling explains the strong magnetocrystalline anisotropy and Ising-like magnetism of Ca3CoRhO6.Comment: 7 pages, 6 figure
    corecore