535 research outputs found

    A calibration method for broad-bandwidth cavity enhanced absorption spectroscopy performed with supercontinuum radiation

    Get PDF
    An efficient calibration method has been developed for broad-bandwidth cavity enhanced absorption spectroscopy. The calibration is performed using phase shift cavity ring-down spectroscopy, which is conveniently implemented through use of an acousto-optic tunable filter (AOTF). The AOTF permits a narrowband portion of the SC spectrum to be scanned over the full high-reflectivity bandwidth of the cavity mirrors. After calibration the AOTF is switched off and broad-bandwidth CEAS can be performed with the same light source without any loss of alignment to the set-up. We demonstrate the merits of the method by probing transitions of oxygen molecules O-2 and collisional pairs of oxygen molecules (O-2)(2) in the visible spectral range

    Joint generative model for fMRI/DWI and its application to population

    Get PDF
    Author Manuscript 2011 March 12. 13th International Conference, Beijing, China, September 20-24, 2010, Proceedings, Part IWe propose a novel probabilistic framework to merge information from DWI tractography and resting-state fMRI correlations. In particular, we model the interaction of latent anatomical and functional connectivity templates between brain regions and present an intuitive extension to population studies. We employ a mean-field approximation to fit the new model to the data. The resulting algorithm identifies differences in latent connectivity between the groups. We demonstrate our method on a study of normal controls and schizophrenia patients.National Alliance for Medical Image Computing (U.S.) (NIH NIBIBNAMICU54-EB005149)Neuroimaging Analysis Center (U.S.) (NIH NCRR NAC P41-RR13218)National Institutes of Health (U.S.) (Grant R01MH074794)National Defense Science and Engineering Graduate FellowshipNational Science Foundation (U.S.) (CAREER Grant 0642971

    Coupled Dipole Method Determination of the Electromagnetic Force on a Particle over a Flat Dielectric Substrate

    Full text link
    We present a theory to compute the force due to light upon a particle on a dielectric plane by the Coupled Dipole Method (CDM). We show that, with this procedure, two equivalent ways of analysis are possible, both based on Maxwell's stress tensor. The interest in using this method is that the nature and size or shape of the object, can be arbitrary. Even more, the presence of a substrate can be incorporated. To validate our theory, we present an analytical expression of the force due to the light acting on a particle either in presence, or not, of a surface. The plane wave illuminating the sphere can be either propagating or evanescent. Both two and three dimensional calculations are studied.Comment: 10 pages, 8 figures and 3 table

    Chemostratigraphy of Neoproterozoic carbonates: implications for 'blind dating'

    Get PDF
    The delta C-13(carb) and Sr-87/Sr-86 secular variations in Neoproteozoic seawater have been used for the purpose of 'isotope stratigraphy' but there are a number of problems that can preclude its routine use. In particular, it cannot be used with confidence for 'blind dating'. The compilation of isotopic data on carbonate rocks reveals a high level of inconsistency between various carbon isotope age curves constructed for Neoproteozoic seawater, caused by a relatively high frequency of both global and local delta C-13(carb) fluctuations combined with few reliable age determinations. Further complication is caused by the unresolved problem as to whether two or four glaciations, and associated negative delta C-13(carb) excursions, can be reliably documented. Carbon isotope stratigraphy cannot be used alone for geological correlation and 'blind dating'. Strontium isotope stratigraphy is a more reliable and precise tool for stratigraphic correlations and indirect age determinations. Combining strontium and carbon isotope stratigraphy, several discrete ages within the 590-544 Myr interval, and two age-groups at 660-610 and 740-690 Myr can be resolved

    On Pole Assignment and Stabilizability of Neutral Type Systems

    Get PDF
    In this note we present a systematic approach to the stabilizability problem of linear infinite-dimensional dynamical systems whose infinitesimal generator has an infinite number of instable eigenvalues. We are interested in strong non-exponential stabilizability by a linear feed-back control. The study is based on our recent results on the Riesz basis property and a careful selection of the control laws which preserve this property. The investigation may be applied to wave equations and neutral type delay equations

    Vacuum-assisted decellularization: an accelerated protocol to generate tissue-engineered human tracheal scaffolds

    Get PDF
    Patients with large tracheal lesions unsuitable for conventional endoscopic or open operations may require a tracheal replacement but there is no present consensus of how this may be achieved. Tissue engineering using decellularized or synthetic tracheal scaffolds offers a new avenue for airway reconstruction. Decellularized human donor tracheal scaffolds have been applied in compassionate-use clinical cases but naturally derived extracellular matrix (ECM) scaffolds demand lengthy preparation times. Here, we compare a clinically applied detergent-enzymatic method (DEM) with an accelerated vacuum-assisted decellularization (VAD) protocol. We examined the histological appearance, DNA content and extracellular matrix composition of human donor tracheae decellularized using these techniques. Further, we performed scanning electron microscopy (SEM) and biomechanical testing to analyze decellularization performance. To assess the biocompatibility of scaffolds generated using VAD, we seeded scaffolds with primary human airway epithelial cells in vitro and performed in vivo chick chorioallantoic membrane (CAM) and subcutaneous implantation assays. Both DEM and VAD protocols produced well-decellularized tracheal scaffolds with no adverse mechanical effects and scaffolds retained the capacity for in vitro and in vivo cellular integration. We conclude that the substantial reduction in time required to produce scaffolds using VAD compared to DEM (approximately 9 days vs. 3–8 weeks) does not compromise the quality of human tracheal scaffold generated. These findings might inform clinical decellularization techniques as VAD offers accelerated scaffold production and reduces the associated costs

    Matching action to need: an analysis of Global Burden of Disease 2017 and population health data to focus adolescent health policy and actions in Myanmar

    Get PDF
    Background: Myanmar is a country undergoing rapid transitions in health. Its national strategic policy for young people's health is being revised but there is a paucity of population data to inform local priorities and needs. Objective: In this paper we describe a comprehensive profile of adolescent health in Myanmar to focus policy and health actions. Methods: We used available primary data, and modelled estimates from the GBD 2017, to describe health outcomes (mortality and morbidity), health risks and determinants for adolescents in Myanmar between 1990-2017. A governance group of key stakeholders guided the framing of the study, interpretation of findings, and recommendations. Results: Overall health has improved for adolescents in Myanmar since 1990, however adolescent mortality remains high, particularly so for older adolescent males; all-cause mortality rate for 10-24 years was 70 per 100,000 for females and 149 per 100,000 for males (16,095 adolescent deaths in 2017). Overall, the dominant health problems were injuries for males and non-communicable disease for females in a context of ongoing burden of communicable and nutritional diseases for both sexes, and reproductive health needs for females. Health risks relating to undernutrition (thinness and anaemia) remain prevalent, with other health risks (overweight, binge alcohol use, and substance use) relatively low by global and regional standards but increasing. Gains have been made in social determinants such as adolescent fertility and modern contraception use; however, advances have been more limited in secondary education completion and engagement in employment and post education training. Conclusions: These results highlight the need to focus current efforts on addressing disease and mortality experienced by adolescents in Myanmar, with a specific focus on injury, mental health and non-communicable disease.Karly I. Cini, Phone Myint Win, Zay Yar Swe, Kyu Kyu Than, Thin Mar Win ... Peter S. Azzopardi ... et al

    Follow-up Imaging of Disk Candidates from the Disk Detective Citizen Science Project: New Discoveries and False Positives in WISE Circumstellar Disk Surveys

    Get PDF
    The Disk Detective citizen science project aims to find new stars with excess 22 μm emission from circumstellar dust in the AllWISE data release from the Wide-field Infrared Survey Explorer. We evaluated 261 Disk Detective objects of interest with imaging with the Robo-AO adaptive optics instrument on the 1.5 m telescope at Palomar Observatory and with RetroCam on the 2.5 m du Pont Telescope at Las Campanas Observatory to search for background objects at 0.″15-12″ separations from each target. Our analysis of these data leads us to reject 7% of targets. Combining this result with statistics from our online image classification efforts implies that at most 7.9% ± 0.2% of AllWISE-selected infrared excesses are good disk candidates. Applying our false-positive rates to other surveys, we find that the infrared excess searches of McDonald et al. and Marton et al. all have false-positive rates >70%. Moreover, we find that all 13 disk candidates in Theissen & West with W4 signal-to-noise ratio >3 are false positives. We present 244 disk candidates that have survived vetting by follow-up imaging. Of these, 213 are newly identified disk systems. Twelve of these are candidate members of comoving pairs based on Gaia astrometry, supporting the hypothesis that warm dust is associated with binary systems. We also note the discovery of 22 μm excess around two known members of the Scorpius-Centaurus association, and we identify known disk host WISEA J164540.79-310226.6 as a likely Sco-Cen member. Thirty of these disk candidates are closer than ∼125 pc (including 26 debris disks), making them good targets for both direct-imaging exoplanet searches

    Whole exome sequencing coupled with unbiased functional analysis reveals new Hirschsprung disease genes

    Get PDF
    Background: Hirschsprung disease (HSCR), which is congenital obstruction of the bowel, results from a failure of enteric nervous system (ENS) progenitors to migrate, proliferate, differentiate, or survive within the distal intestine. Previous studies that have searched for genes underlying HSCR have focused on ENS-related pathways and genes not fitting the current knowledge have thus often been ignored. We identify and validate novel HSCR genes using whole exome sequencing (WES), burden tests, in silico prediction, unbiased in vivo analyses of the mutated genes in zebrafish, and expression analyses in zebrafish, mouse, and human. Results: We performed de novo mutation (DNM) screening on 24 HSCR trios. We identify 28 DNMs in 21 different genes. Eight of the DNMs we identified occur in RET, the main HSCR gene, and the remaining 20 DNMs reside in genes not reported in the ENS. Knockdown of all 12 genes with missense or loss-of-function DNMs showed that the orthologs of four genes (DENND3, NCLN, NUP98, and TBATA) are indispensable for ENS development in zebrafish, and these results were confirmed by CRISPR knockout. These genes are also expressed in human and mouse gut and/or ENS progenitors. Importantly, the encoded proteins are linked to neuronal processes shared by the central nervous system and the ENS. Conclusions: Our data open new fields of investigation into HSCR pathology and provide novel insights into the development of the ENS. Moreover, the study demonstrates that functional analyses of genes carrying DNMs are warranted to delineate the full genetic architecture of rare complex diseases
    corecore