139 research outputs found

    HIV Self-Testing among Men Who Have Sex with Men (MSM) in the UK: A Qualitative Study of Barriers and Facilitators, Intervention Preferences and Perceived Impacts

    Get PDF
    INTRODUCTION: Innovative strategies, such as HIV self-testing (HIVST), could increase HIV testing rates and diagnosis. Evidence to inform the design of an HIVST intervention in the UK is scarce with very little European data on this topic. This study aims to understand values and preferences for HIVST interventions targeting MSM in the UK. We explore the acceptability of HIVST among MSM in the context of known barriers and facilitators to testing for HIV; assess preferences for, and the concerns about, HIVST. METHODS: Six focus group discussions (FGD) were conducted with 47 MSM in London, Manchester and Plymouth. HIVST as a concept was discussed and participants were asked to construct their ideal HIVST intervention. OraQuickTM and BioSureTM kits were then demonstrated and participants commented on procedure, design and instructions. FGDs were recorded and transcribed verbatim, then analysed thematically. RESULTS: Convenience and confidentiality of HIVST was seen to facilitate testing. Issues with domestic privacy problematised confidentiality. HIVST kits and instructions were thought to be unnecessarily complicated, and did not cater to the required range of abilities. The window period was the most important element of an HIVST, with strong preference for 4th generation testing. Kits which used a blood sample were more popular than those using saliva due to higher perceived accuracy although phobia of needles and/or blood meant some would only access HIVST if a saliva sample option was available. A range of access options was important to maintain convenience and privacy. HIVST kits were assumed to increase frequency of testing, with concerns related to the dislocation of HIVST from sexual health care pathways and services. DISCUSSION: Utility of HIVST arises from relatively high levels of confidentiality and convenience. Until 4th generation assays are available HIVST will be seen as supplementary in a UK context

    Temporal and vertical distribution of soluble carbohydrate, fiber, protein, and digestibility levels in orchardgrass swards

    Get PDF
    Herbage nonstructural carbohydrates (NC) contribute to livestock performance and silage fermentation. Knowledge of the distribution patterns of NC and other nutritional constituents in orchardgrass (Dactylic glomerata L.) swards could support harvest management decisions. Our objective was to determine diurnal and vertical patterns of total NC (TNC), crude protein (CP), and neutral detergent fiber (NDF) concentrations, and in vitro true dry matter digestibility (IVTDMD) and NDF digestibility (NDFD) in orchardgrass swards in October, June, and August. Herbage was sampled at 6-h intervals between 0100 and 1900 h from horizons positioned 40 to 27, 27 to 18, 18 to 12, and 12 to 8 cm above soil surface. Herbage composition varied among horizons in all months, and diurnally only in June and August. In June and August, only TNC with maxima of 109 to 123 g kg-1 at 1900 h exhibited consistent diurnal patterns. Swards harvested to residual heights of 18, 12, or 8 cm exhibited little spatial variation in TNC during June and August, but CP, NDF, and IVTDMD varied with harvest depth on all dates. As swards were harvested to successively greater depths, TNC increased in October, but not in June and August. In contrast, CP and IVTDMD decreased, and NDF increased, for harvests to successively greater depths in all months. For harvests in June and August, manipulation of depth would capture more variation in CP, NDF, and IVTDMD, but manipulation of time of day of harvest would capture more variation in TNC to meet animal performance and silage fermentation requirements

    Sapling size influences shade tolerance ranking among southern boreal tree species

    Get PDF
    1 Traditional rankings of shade tolerance of trees make little reference to individual size. However, greater respiratory loads with increasing sapling size imply that larger individuals will be less able to tolerate shade than smaller individuals of the same species and that there may be shifts among species in shade tolerance with size. 2 We tested this hypothesis using maximum likelihood estimation to develop individual-tree-based models of the probability of mortality as a function of recent growth rate for seven species: trembling aspen, paper birch, yellow birch, mountain maple, white spruce, balsam fir and eastern white cedar. 3 Shade tolerance of small individuals, as quantified by risk of mortality at low growth, was mostly consistent with traditional shade tolerance rankings such that cedar > balsam fir > white spruce > yellow birch > mountain maple = paper birch > aspen. 4 Differences in growth-dependent mortality were greatest between species in the smallest size classes. With increasing size, a reduced tolerance to shade was observed for all species except trembling aspen and thus species tended to converge in shade tolerance with size. At a given level of radial growth larger trees, apart from aspen, had a higher probability of mortality than smaller trees. 5 Successional processes associated with shade tolerance may thus be most important in the seedling stage and decrease with ontogeny

    Magnetic Field Amplification in Galaxy Clusters and its Simulation

    Get PDF
    We review the present theoretical and numerical understanding of magnetic field amplification in cosmic large-scale structure, on length scales of galaxy clusters and beyond. Structure formation drives compression and turbulence, which amplify tiny magnetic seed fields to the microGauss values that are observed in the intracluster medium. This process is intimately connected to the properties of turbulence and the microphysics of the intra-cluster medium. Additional roles are played by merger induced shocks that sweep through the intra-cluster medium and motions induced by sloshing cool cores. The accurate simulation of magnetic field amplification in clusters still poses a serious challenge for simulations of cosmological structure formation. We review the current literature on cosmological simulations that include magnetic fields and outline theoretical as well as numerical challenges.Comment: 60 pages, 19 Figure

    Measurement of prompt D0^{0} and D‟\overline{D}0^{0} meson azimuthal anisotropy and search for strong electric fields in PbPb collisions at root SNN\sqrt{S_{NN}} = 5.02 TeV

    Get PDF
    The strong Coulomb field created in ultrarelativistic heavy ion collisions is expected to produce a rapiditydependent difference (Av2) in the second Fourier coefficient of the azimuthal distribution (elliptic flow, v2) between D0 (uc) and D0 (uc) mesons. Motivated by the search for evidence of this field, the CMS detector at the LHC is used to perform the first measurement of Av2. The rapidity-averaged value is found to be (Av2) = 0.001 ? 0.001 (stat)? 0.003 (syst) in PbPb collisions at ?sNN = 5.02 TeV. In addition, the influence of the collision geometry is explored by measuring the D0 and D0mesons v2 and triangular flow coefficient (v3) as functions of rapidity, transverse momentum (pT), and event centrality (a measure of the overlap of the two Pb nuclei). A clear centrality dependence of prompt D0 meson v2 values is observed, while the v3 is largely independent of centrality. These trends are consistent with expectations of flow driven by the initial-state geometry. ? 2021 The Author. Published by Elsevier B.V. This is an open access article under the CC BY licens

    Measurement of the CP-violating phase ϕs_{s} in the B0^{0}s_{s}→J/ψ φ(1020) →ΌâșΌ⁻KâșK⁻ channel in proton-proton collisions at √s = 13 TeV

    Get PDF

    Phylogenomics and the rise of the angiosperms

    Get PDF
    Angiosperms are the cornerstone of most terrestrial ecosystems and human livelihoods1,2. A robust understanding of angiosperm evolution is required to explain their rise to ecological dominance. So far, the angiosperm tree of life has been determined primarily by means of analyses of the plastid genome3,4. Many studies have drawn on this foundational work, such as classification and first insights into angiosperm diversification since their Mesozoic origins5,6,7. However, the limited and biased sampling of both taxa and genomes undermines confidence in the tree and its implications. Here, we build the tree of life for almost 8,000 (about 60%) angiosperm genera using a standardized set of 353 nuclear genes8. This 15-fold increase in genus-level sampling relative to comparable nuclear studies9 provides a critical test of earlier results and brings notable change to key groups, especially in rosids, while substantiating many previously predicted relationships. Scaling this tree to time using 200 fossils, we discovered that early angiosperm evolution was characterized by high gene tree conflict and explosive diversification, giving rise to more than 80% of extant angiosperm orders. Steady diversification ensued through the remaining Mesozoic Era until rates resurged in the Cenozoic Era, concurrent with decreasing global temperatures and tightly linked with gene tree conflict. Taken together, our extensive sampling combined with advanced phylogenomic methods shows the deep history and full complexity in the evolution of a megadiverse clade
    • 

    corecore