158 research outputs found

    The Effects Of An Education Recovery Team On Teacher Professional Practices, Collective Teacher Efficacy And Student Achievement In Persistently Low Achieving Schools

    Get PDF
    This paper is an exploration of the daily work of education recovery teams in turnaround schools in eastern Kentucky. Data used for this analysis were collected from the Kentucky Department of Education. Data from the identified persistently low achieving schools was compared to pre and post-test over one school year to determine the effectiveness of the turnaround practices on the low achieving schools. Forty-one schools have been identified in the state as low performing; sixteen in the eastern service region. Findings from this study lend insights into the work of education turnaround and best practices of education recovery teams. The purpose of this paper is to help administrators, as well as local, state and federal policy makers, better understand factors that influence school turnaround efforts and the impact on best practices for all educational practice

    A new instability of accretion disks around compact magnetic stars

    Full text link
    Aperiodic variability and Quasi Periodic Oscillations (QPOs) are observed from accretion disks orbiting white dwarfs, neutron stars, and black holes, suggesting that the flow is universally broken up into discrete blobs. We consider the interaction of these blobs with the magnetic field of a compact, accreting star, where diamagnetic blobs suffer a drag. We show that when the magnetic moment is not aligned with the spin axis, the resulting force is pulsed, and this can lead to resonance with the oscillation of the blobs around the equatorial plane; a resonance condition where energy is effectively pumped into non--equatorial motions is then derived. We show that the same resonance condition applies for the quadrupolar component of the magnetic field. We discuss the conditions of applicability of this result, showing that they are quite wide. We also show that realistic complications, such as chaotic magnetic fields, buoyancy, radiation pressure, evaporation, Kelvin--Helmholtz instability, and shear stresses due to differential rotation do not affect our results. In accreting neutron stars with millisecond periods, we show that this instability leads to Lense-Thirring precession of the blobs, and that damping by viscosity can be neglected.Comment: Accepted for publication in the Astrophysical Journal. AASTeX LateX needed. Two figure

    The effect of rituximab therapy on immunoglobulin levels in patients with multisystem autoimmune disease.

    Get PDF
    BACKGROUND: Rituximab is a B cell depleting anti-CD20 monoclonal antibody. CD20 is not expressed on mature plasma cells and accordingly rituximab does not have immediate effects on immunoglobulin levels. However, after rituximab some patients develop hypogammaglobulinaemia. METHODS: We performed a single centre retrospective review of 177 patients with multisystem autoimmune disease receiving rituximab between 2002 and 2010. The incidence, severity and complications of hypogammaglobulinaemia were investigated. RESULTS: Median rituximab dose was 6 g (1-20.2) and total follow-up was 8012 patient-months. At first rituximab, the proportion of patients with IgG <6 g/L was 13% and remained stable at 17% at 24 months and 14% at 60 months. Following rituximab, 61/177 patients (34%) had IgG <6 g/L for at least three consecutive months, of whom 7/177 (4%) had IgG <3 g/L. Low immunoglobulin levels were associated with higher glucocorticoid doses during follow up and there was a trend for median IgG levels to fall after ≥ 6 g rituximab. 45/115 (39%) with IgG ≥ 6 g/L versus 26/62 (42%) with IgG <6 g/L experienced severe infections (p=0.750). 6/177 patients (3%) received intravenous immunoglobulin replacement therapy, all with IgG <5 g/L and recurrent infection. CONCLUSIONS: In multi-system autoimmune disease, prior cyclophosphamide exposure and glucocorticoid therapy but not cumulative rituximab dose was associated with an increased incidence of hypogammaglobulinaemia. Severe infections were common but were not associated with immunoglobulin levels. Repeat dose rituximab therapy appears safe with judicious monitoring

    Molt-dependent transcriptomic analysis of cement proteins in the barnacle Amphibalanus amphitrite

    Full text link
    Abstract Background A complete understanding of barnacle adhesion remains elusive as the process occurs within and beneath the confines of a rigid calcified shell. Barnacle cement is mainly proteinaceous and several individual proteins have been identified in the hardened cement at the barnacle-substrate interface. Little is known about the molt- and tissue-specific expression of cement protein genes but could offer valuable insight into the complex multi-step processes of barnacle growth and adhesion. Methods The main body and sub-mantle tissue of the barnacle Amphibalanus amphitrite (basionym Balanus amphitrite) were collected in pre- and post-molt stages. RNA-seq technology was used to analyze the transcriptome for differential gene expression at these two stages and liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) was used to analyze the protein content of barnacle secretions. Results We report on the transcriptomic analysis of barnacle cement gland tissue in pre- and post-molt growth stages and proteomic investigation of barnacle secretions. While no significant difference was found in the expression of cement proteins genes at pre- and post-molting stages, expression levels were highly elevated in the sub-mantle tissue (where the cement glands are located) compared to the main barnacle body. We report the discovery of a novel 114kD cement protein, which is identified in material secreted onto various surfaces by adult barnacles and with the encoding gene highly expressed in the sub-mantle tissue. Further differential gene expression analysis of the sub-mantle tissue samples reveals a limited number of genes highly expressed in pre-molt samples with a range of functions including cuticular development, biominerialization, and proteolytic activity. Conclusions The expression of cement protein genes appears to remain constant through the molt cycle and is largely confined to the sub-mantle tissue. Our results reveal a novel and potentially prominent protein to the mix of cement-related components in A. amphitrite. Despite the lack of a complete genome, sample collection allowed for extended transcriptomic analysis of pre- and post-molt barnacle samples and identified a number of highly-expressed genes. Our results highlight the complexities of this sessile marine organism as it grows via molt cycles and increases the area over which it exhibits robust adhesion to its substrate.http://deepblue.lib.umich.edu/bitstream/2027.42/115487/1/12864_2015_Article_2076.pd

    Convergence of marine megafauna movement patterns in coastal and open oceans

    Get PDF
    Author Posting. © The Author(s), 2017. This is the author's version of the work. It is posted here for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences of the United States of America 115 (2018): 3072-3077, doi:10.1073/pnas.1716137115.The extent of increasing anthropogenic impacts on large marine vertebrates partly depends on the animals’ movement patterns. Effective conservation requires identification of the key drivers of movement including intrinsic properties and extrinsic constraints associated with the dynamic nature of the environments the animals inhabit. However, the relative importance of intrinsic versus extrinsic factors remains elusive. We analyse a global dataset of 2.8 million locations from > 2,600 tracked individuals across 50 marine vertebrates evolutionarily separated by millions of years and using different locomotion modes (fly, swim, walk/paddle). Strikingly, movement patterns show a remarkable convergence, being strongly conserved across species and independent of body length and mass, despite these traits ranging over 10 orders of magnitude among the species studied. This represents a fundamental difference between marine and terrestrial vertebrates not previously identified, likely linked to the reduced costs of locomotion in water. Movement patterns were primarily explained by the interaction between species-specific traits and the habitat(s) they move through, resulting in complex movement patterns when moving close to coasts compared to more predictable patterns when moving in open oceans. This distinct difference may be associated with greater complexity within coastal micro-habitats, highlighting a critical role of preferred habitat in shaping marine vertebrate global movements. Efforts to develop understanding of the characteristics of vertebrate movement should consider the habitat(s) through which they move to identify how movement patterns will alter with forecasted severe ocean changes, such as reduced Arctic sea ice cover, sea level rise and declining oxygen content.Workshops funding granted by the UWA Oceans Institute, AIMS, and KAUST. AMMS was supported by an ARC Grant DE170100841 and an IOMRC (UWA, AIMS, CSIRO) fellowship; JPR by MEDC (FPU program, Spain); DWS by UK NERC and Save Our Seas Foundation; NQ by FCT (Portugal); MMCM by a CAPES fellowship (Ministry of Education)

    Direct Recognition of Fusobacterium nucleatum by the NK Cell Natural Cytotoxicity Receptor NKp46 Aggravates Periodontal Disease

    Get PDF
    Periodontitis is a common human chronic inflammatory disease that results in the destruction of the tooth attachment apparatus and tooth loss. Although infections with periopathogenic bacteria such as Porphyromonas gingivalis (P. gingivalis) and Fusobacterium nucleatum (F. nucleatum) are essential for inducing periodontitis, the nature and magnitude of the disease is determined by the host's immune response. Here, we investigate the role played by the NK killer receptor NKp46 (NCR1 in mice), in the pathogenesis of periodontitis. Using an oral infection periodontitis model we demonstrate that following F. nucleatum infection no alveolar bone loss is observed in mice deficient for NCR1 expression, whereas around 20% bone loss is observed in wild type mice and in mice infected with P. gingivalis. By using subcutaneous chambers inoculated with F. nucleatum we demonstrate that immune cells, including NK cells, rapidly accumulate in the chambers and that this leads to a fast and transient, NCR1-dependant TNF-α secretion. We further show that both the mouse NCR1 and the human NKp46 bind directly to F. nucleatum and we demonstrate that this binding is sensitive to heat, to proteinase K and to pronase treatments. Finally, we show in vitro that the interaction of NK cells with F. nucleatum leads to an NCR1-dependent secretion of TNF-α. Thus, the present study provides the first evidence that NCR1 and NKp46 directly recognize a periodontal pathogen and that this interaction influences the outcome of F. nucleatum-mediated periodontitis
    corecore