212 research outputs found

    Airflow calibration and exhaust pressure/temperature survey of an F404, S/N 215-109, turbofan engine

    Get PDF
    A General Electric F-404 turbofan engine was calibrated for thrust and airflow at the NASA Lewis Propulsion System Laboratory in support of future flight tests of the X-29 aircraft. Tests were conducted with and without augmentation, over a range of flight conditions, including the two design points of the airplane. Data obtained during the altitude tests will be used to correct two independent gross thrust calculation routines which will be installed and operated on the airplane to determine in-flight gross thrust. Corrected airflow data as a function of corrected fan speed collapsed onto a single curve. Similarly, trends were observed and defined for both augmented and dry thrust. Overall agreement between measured data and F-404 Engine Spec Deck data was within 2 percent for airflow and 6 percent for thrust. The results of an uncertainty analysis for thrust and airflow is presented. In addition to the thrust calibration, the exhaust gas boundary layer pressure and temperatures were surveyed at selected condition and engine power levels to obtain data for another NASA F-404 program. Test data for these surveys are presented

    Air- Sea Interactions And Ocean Dynamics In The Southwest Tropical Indian Ocean

    Get PDF
    The Southwest Tropical Indian Ocean (SWTIO) features a unique, seasonal upward lift of the thermocline, which is known as the Seychelles-Chagos Thermocline Ridge (SCTR; 55°E-65°E, 5°S-12°S). It is known that a high correlation exists between the depth of the thermocline and sea surface temperature (SST; a key ingredient for tropical cyclogenesis). With a particular focus on 2012/2013, this study reveals the dynamic properties of the SCTR that play an important role in the modulation of tropical cyclones in the SWTIO. Phenomena including Indian Ocean Dipole (IOD) and El Niño Southern Oscillation (ENSO) are also well correlated to cyclogenesis through changes in the thermocline of the SCTR. More tropical cyclones form over the SWTIO when the thermocline is deeper, which has a positive relation to the arrival of downwelling Rossby waves originating in the southeast tropical Indian Ocean due to the anomalous effects of IOD. In addition to influencing cyclogeneis over the SCTR region, remote processes such as IOD and ENSO are also the primary drivers of the SCTR interannual variability with respect to both ocean temperature and salinity. Thus, this study also explores how temperature and salinity with depth, as well as at the surface, in the SCTR change with the climatic events in a given year. Although ENSO is known to have a stronger impact on SST south of the SCTR (10°S-15°S), this study reveals the stronger impact of ENSO on sea surface salinity (SSS) in the SCTR

    Chapter Instant Architecture: Hosted Access to the Archivision Research Library with Built-In Image Management & Presentation Tools

    Get PDF
    The Archivision Research Library is a collection of 100,000 digital images of art and architecture professionally photographed by a trained architect. It documents the built environment--from ancient monuments to cutting-edge contemporary constructions--with extensive, standardized descriptive metadata. Archivision is accessible for research and teaching through a web-based application--a dedicated hosted instance of MDID--with vrcHost LLC delivering full services and technical support: installation, integration, and maintenance. This combination provides not only instant access to Archivision, but also to sophisticated tools for managing images using an open source media management system to discover, aggregate, study, and present digital media

    Temperature measurement using infrared imaging systems during turbine engine altitude testing

    Get PDF
    This report details the use of infrared imaging for temperature measurement and thermal pattern determination during simulated altitude engine testing in the NASA Lewis Propulsion Systems Laboratory. Three identical argon-cooled imaging systems were installed in the facility exhaust collector behind sapphire windows to look at engine internal surfaces. The report describes the components of each system, presents the specifics of the complicated installation, and explains the operation of the systems during engine testing. During the program, several problems emerged, such as argon contamination system, component overheating, cracked sapphire windows, and other unexplained effects. This report includes a summary of the difficulties as well as the solutions developed. The systems performed well, considering they were in an unusually harsh exhaust environment. Both video and digital data were recorded, and the information provided valuable material for the engineers and designers to quickly make any necessary design changes to the engine hardware cooling system. The knowledge and experience gained during this program greatly simplified the installation and use of the systems during later test programs in the facility. The infrared imaging systems have significantly enhanced the measurement capabilities of the facility, and have become an outstanding and versatile testing resource in the Propulsion Systems Laboratory

    Techniques utilized in the simulated altitude testing of a 2D-CD vectoring and reversing nozzle

    Get PDF
    Simulated altitude testing of a two-dimensional, convergent-divergent, thrust vectoring and reversing exhaust nozzle was accomplished. An important objective of this test was to develop test hardware and techniques to properly operate a vectoring and reversing nozzle within the confines of an altitude test facility. This report presents detailed information on the major test support systems utilized, the operational performance of the systems and the problems encountered, and test equipment improvements recommended for future tests. The most challenging support systems included the multi-axis thrust measurement system, vectored and reverse exhaust gas collection systems, and infrared temperature measurement systems used to evaluate and monitor the nozzle. The feasibility of testing a vectoring and reversing nozzle of this type in an altitude chamber was successfully demonstrated. Supporting systems performed as required. During reverser operation, engine exhaust gases were successfully captured and turned downstream. However, a small amount of exhaust gas spilled out the collector ducts' inlet openings when the reverser was opened more than 60 percent. The spillage did not affect engine or nozzle performance. The three infrared systems which viewed the nozzle through the exhaust collection system worked remarkably well considering the harsh environment

    Implementation of Staff Training Curriculum Aimed at Improving MDS Coding in a Long-Term Care Setting

    Get PDF
    Minimum Data Set (MDS) is used in long-term care facilities to document resident’s information and assessments and to determine the resident’s eligibility to receive Medicare or Medicaid insurance coverage for treatment expenses while in the LTC facility. When reviewing the MDS, the facility identified inaccurate documentation of the resident’s functional mobility ambulating on the unit. This quality improvement project was undertaken to improve assessments, resident interventions, and documentation regarding functional mobility. Following literature review and chart audits, an educational intervention was implemented for nursing assistants to promote understanding of the MDS coding system when charting functional mobility on the unit. The educational intervention included information on coding for the level of staff assistance and accurate charting of assistance levels. Following the education intervention data was again collected through chart review on MDS coding to determine effectiveness of the intervention. The goal of this project was to create more accurate MDS documentation and ultimately improve resident independence while ambulating on the unit in this long-term care facility

    Pressure and Volume Limited Ventilation for the Ventilatory Management of Patients with Acute Lung Injury: A Systematic Review and Meta-Analysis

    Get PDF
    Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are life threatening clinical conditions seen in critically ill patients with diverse underlying illnesses. Lung injury may be perpetuated by ventilation strategies that do not limit lung volumes and airway pressures. We conducted a systematic review and meta-analysis of randomized controlled trials (RCTs) comparing pressure and volume-limited (PVL) ventilation strategies with more traditional mechanical ventilation in adults with ALI and ARDS.We searched Medline, EMBASE, HEALTHSTAR and CENTRAL, related articles on PubMed™, conference proceedings and bibliographies of identified articles for randomized trials comparing PVL ventilation with traditional approaches to ventilation in critically ill adults with ALI and ARDS. Two reviewers independently selected trials, assessed trial quality, and abstracted data. We identified ten trials (n = 1,749) meeting study inclusion criteria. Tidal volumes achieved in control groups were at the lower end of the traditional range of 10-15 mL/kg. We found a clinically important but borderline statistically significant reduction in hospital mortality with PVL [relative risk (RR) 0.84; 95% CI 0.70, 1.00; p = 0.05]. This reduction in risk was attenuated (RR 0.90; 95% CI 0.74, 1.09, p = 0.27) in a sensitivity analysis which excluded 2 trials that combined PVL with open-lung strategies and stopped early for benefit. We found no effect of PVL on barotrauma; however, use of paralytic agents increased significantly with PVL (RR 1.37; 95% CI, 1.04, 1.82; p = 0.03).This systematic review suggests that PVL strategies for mechanical ventilation in ALI and ARDS reduce mortality and are associated with increased use of paralytic agents
    • …
    corecore