8,562 research outputs found

    The angiotensin-converting enzyme (ACE) gene family of Anopheles gambiae

    Get PDF
    Background Members of the M2 family of peptidases, related to mammalian angiotensin converting enzyme (ACE), play important roles in regulating a number of physiological processes. As more invertebrate genomes are sequenced, there is increasing evidence of a variety of M2 peptidase genes, even within a single species. The function of these ACE-like proteins is largely unknown. Sequencing of the A. gambiae genome has revealed a number of ACE-like genes but probable errors in the Ensembl annotation have left the number of ACE-like genes, and their structure, unclear. Results TBLASTN and sequence analysis of cDNAs revealed that the A. gambiae genome contains nine genes (AnoACE genes) which code for proteins with similarity to mammalian ACE. Eight of these genes code for putative single domain enzymes similar to other insect ACEs described so far. AnoACE9, however, has several features in common with mammalian somatic ACE such as a two domain structure and a hydrophobic C terminus. Four of the AnoACE genes (2, 3, 7 and 9) were shown to be expressed at a variety of developmental stages. Expression of AnoACE3, AnoACE7 and AnoACE9 is induced by a blood meal, with AnoACE7 showing the largest (approximately 10-fold) induction. Conclusion Genes coding for two-domain ACEs have arisen several times during the course of evolution suggesting a common selective advantage to having an ACE with two active-sites in tandem in a single protein. AnoACE7 belongs to a sub-group of insect ACEs which are likely to be membrane-bound and which have an unusual, conserved gene structure

    Detecting the magnetic cosmic web through deep radio polarization imaging

    Get PDF
    The polarisation of radio emission is one of the most powerful probes of magnetic fields in the cosmos. Faraday rotation of polarized radiation provides one of the methods to observe magnetic fields. Measuring the rotation of the polarisation angle of radiation from an extragalactic source over a broad radio bandwidth allows us to infer the properties of the magnetic fields that the radiation passed through on the path to the observer. In the last few decades, the presence of structure in the matter distribution of the universe has been observed. It remains an open question whether there are magnetic fields associated with this large-scale structure. Large-scale universe simulations allow us to investigate the effect of extragalactic magnetic fields on the spatial distribution of Rotation Measure (RM) of radio sources that will be detected in deep radio images with MeerKAT. We constructed lightcones out to z = 1 from large-scale universe simulations as a base for our model and assemble a routine to trace large scale structures, attach magnetic fields to the structure and construct RM observations. The aim is to explore whether deep MeerKAT continuum observations will be able to detect magnetic fields associated with large-scale structure (the so-called magnetic cosmic web)

    Comparing compact binary parameter distributions I: Methods

    Full text link
    Being able to measure each merger's sky location, distance, component masses, and conceivably spins, ground-based gravitational-wave detectors will provide a extensive and detailed sample of coalescing compact binaries (CCBs) in the local and, with third-generation detectors, distant universe. These measurements will distinguish between competing progenitor formation models. In this paper we develop practical tools to characterize the amount of experimentally accessible information available, to distinguish between two a priori progenitor models. Using a simple time-independent model, we demonstrate the information content scales strongly with the number of observations. The exact scaling depends on how significantly mass distributions change between similar models. We develop phenomenological diagnostics to estimate how many models can be distinguished, using first-generation and future instruments. Finally, we emphasize that multi-observable distributions can be fully exploited only with very precisely calibrated detectors, search pipelines, parameter estimation, and Bayesian model inference

    Simulation of ultrasonic lamb wave generation, propagation and detection for an air coupled robotic scanner

    Get PDF
    A computer simulator, to facilitate the design and assessment of a reconfigurable, air-coupled ultrasonic scanner is described and evaluated. The specific scanning system comprises a team of remote sensing agents, in the form of miniature robotic platforms that can reposition non-contact Lamb wave transducers over a plate type of structure, for the purpose of non-destructive evaluation (NDE). The overall objective is to implement reconfigurable array scanning, where transmission and reception are facilitated by different sensing agents which can be organised in a variety of pulse-echo and pitch-catch configurations, with guided waves used to generate data in the form of 2-D and 3-D images. The ability to reconfigure the scanner adaptively requires an understanding of the ultrasonic wave generation, its propagation and interaction with potential defects and boundaries. Transducer behaviour has been simulated using a linear systems approximation, with wave propagation in the structure modelled using the local interaction simulation approach (LISA). Integration of the linear systems and LISA approaches are validated for use in Lamb wave scanning by comparison with both analytic techniques and more computationally intensive commercial finite element/difference codes. Starting with fundamental dispersion data, the paper goes on to describe the simulation of wave propagation and the subsequent interaction with artificial defects and plate boundaries, before presenting a theoretical image obtained from a team of sensing agents based on the current generation of sensors and instrumentation

    Characterizing Entanglement Sources

    Get PDF
    We discuss how to characterize entanglement sources with finite sets of measurements. The measurements do not have to be tomographically complete, and may consist of POVMs rather than von Neumann measurements. Our method yields a probability that the source generates an entangled state as well as estimates of any desired calculable entanglement measures, including their error bars. We apply two criteria, namely Akaike's information criterion and the Bayesian information criterion, to compare and assess different models (with different numbers of parameters) describing entanglement-generating devices. We discuss differences between standard entanglement-verificaton methods and our present method of characterizing an entanglement source.Comment: This submission, together with the next one, supersedes arXiv:0806.416

    The Cock Shall Crow : A Ditty

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-vp/5769/thumbnail.jp

    Research on physical and physiological aspects of visual optics in space flight

    Get PDF
    Physical and physiological aspects of visual optics in space fligh

    Information criteria for efficient quantum state estimation

    Full text link
    Recently several more efficient versions of quantum state tomography have been proposed, with the purpose of making tomography feasible even for many-qubit states. The number of state parameters to be estimated is reduced by tentatively introducing certain simplifying assumptions on the form of the quantum state, and subsequently using the data to rigorously verify these assumptions. The simplifying assumptions considered so far were (i) the state can be well approximated to be of low rank, or (ii) the state can be well approximated as a matrix product state. We add one more method in that same spirit: we allow in principle any model for the state, using any (small) number of parameters (which can, e.g., be chosen to have a clear physical meaning), and the data are used to verify the model. The proof that this method is valid cannot be as strict as in above-mentioned cases, but is based on well-established statistical methods that go under the name of "information criteria." We exploit here, in particular, the Akaike Information Criterion (AIC). We illustrate the method by simulating experiments on (noisy) Dicke states
    • …
    corecore