6,632 research outputs found
Controllable forms for stabilising pole assignment design of generalised bilinear systems
Bilinear structures are able to represent nonlinear phenomena more accurately than linear models, and thereby help to extend the range of satisfactory control performance. However, closed loop characteristics are typically designed by simulation and stability is not guaranteed. In this reported work, it is shown how bilinear systems are a special case of the more general state dependent parameter (SDP) model, which can subsequently be utilised to design stabilising feedback controllers using a special form of nonlinear pole assignment. To establish the link, however, an important generalisation of the SDP pole assignment method is developed
Characterizing Entanglement Sources
We discuss how to characterize entanglement sources with finite sets of
measurements. The measurements do not have to be tomographically complete, and
may consist of POVMs rather than von Neumann measurements. Our method yields a
probability that the source generates an entangled state as well as estimates
of any desired calculable entanglement measures, including their error bars. We
apply two criteria, namely Akaike's information criterion and the Bayesian
information criterion, to compare and assess different models (with different
numbers of parameters) describing entanglement-generating devices. We discuss
differences between standard entanglement-verificaton methods and our present
method of characterizing an entanglement source.Comment: This submission, together with the next one, supersedes
arXiv:0806.416
Experimental pig-to-pig transmission dynamics for African swine fever virus, Georgia 2007/1 strain
African swine fever virus (ASFV) continues to cause outbreaks in domestic pigs and wild boar in Eastern European countries. To gain insights into its transmission dynamics, we estimated the pig-to-pig basic reproduction number (R 0) for the Georgia 2007/1 ASFV strain using a stochastic susceptible-exposed-infectious-recovered (SEIR) model with parameters estimated from transmission experiments. Models showed that R 0 is 2·8 [95% confidence interval (CI) 1·3–4·8] within a pen and 1·4 (95% CI 0·6–2·4) between pens. The results furthermore suggest that ASFV genome detection in oronasal samples is an effective diagnostic tool for early detection of infection. This study provides quantitative information on transmission parameters for ASFV in domestic pigs, which are required to more effectively assess the potential impact of strategies for the control of between-farm epidemic spread in European countries.ISSN:0950-2688ISSN:1469-440
Debating the Field Civil Code 105 Years Late
Debating the Field Civil Code 105 Years Lat
On designing observers for time-delay systems with nonlinear disturbances
This is the post print version of the article. The official published version can be obtained from the link below - Copyright 2002 Taylor & Francis LtdIn this paper, the observer design problem is studied for a class of time-delay nonlinear systems. The system under consideration is subject to delayed state and non-linear disturbances. The time-delay is allowed to be time-varying, and the non-linearities are assumed to satisfy global Lipschitz conditions. The problem addressed is the design of state observers such that, for the admissible time-delay as well as non-linear disturbances, the dynamics of the observation error is globally exponentially stable. An effective algebraic matrix inequality approach is developed to solve the non-linear observer design problem. Specifically, some conditions for the existence of the desired observers are derived, and an explicit expression of desired observers is given in terms of some free parameters. A simulation example is included to illustrate the practical applicability of the proposed theory.The work of Z. Wang was supported in part by the University of Kaiserslautern of Germany and the Alexander von Humboldt Foundation of Germany
- …