546 research outputs found

    Scenario for Fractional Quantum Hall Effect in Bulk Isotropic Materials

    Full text link
    We investigate the possibility of a strongly correlated Fractional Quantum Hall (FQH) state in bulk three dimensional isotropic (not layered) materials. We find that a FQH state can exist at low densities only if it is accompanied by a staging transition in which the electrons re-organize themselves in layers, perpendicular to the magnetic field, at distances of order the magnetic length apart. The Hartree energy associated to the staging transition is off-set by the correlation Fock energy of the 3D FQH state. We obtain the phase diagram of bulk electrons in a magnetic field subject to Coulomb interactions as a function of carrier density and lattice constant. At very low densities, the 3D FQH state exhibits a transition to a 3D Wigner crystal state stabilized by phonon correlations

    Monopole Flux State on the Pyrochlore Lattice

    Full text link
    The ground state of a spin 1/2 nearest neighbor quantum Heisenberg antiferromagnet on the pyrochlore lattice is investigated using a large NN SU(N) fermionic mean field theory. We find several mean field states, of which the state of lowest energy upon Gutzwiller projection, is a parity and time reversal breaking chiral phase with a unit monopole flux exiting each tetrahedron. This "monopole flux" state has a Fermi surface consisting of 4 lines intersecting at a point. At mean field the low-energy excitations about the Fermi surface are gapless spinons. An analysis using the projective symmetry group of this state suggests that the state is stable to small fluctuations which neither induce a gap, nor alter the unusual Fermi surface

    Excess sub-millimetre emission from GRS 1915+105

    Get PDF
    We present the first detections of the black hole X-ray binary GRS 1915+105 at sub-millimetre wavelengths. We clearly detect the source at 350 GHz on two epochs, with significant variability over the 24 hr between epochs. Quasi-simultaneous radio monitoring indicates an approximately flat spectrum from 2 - 350 GHz, although there is marginal evidence for a minimum in the spectrum between 15 - 350 GHz. The flat spectrum and correlated variability imply that the sub-mm emission arises from the same synchrotron source as the radio emission. This source is likely to be a quasi-steady partially self-absorbed jet, in which case these sub-mm observations probe significantly closer to the base of the jet than do radio observations and may be used in future as a valuable diagnostic of the disc:jet connection in this source.Comment: 5 pages, 3 figures, accepted for publication in MNRA

    Legislative strengthening meets party support in international assistance: a closer relationship?

    Get PDF
    Recent reports recommend that international efforts to help strengthen legislatures in emerging democracies should work more closely with support for building stronger political parties and competitive party systems. This article locates the recommendations within international assistance more generally and reviews the arguments. It explores problems that must be addressed if the recommendations are to be implemented effectively. The article argues that an alternative, issue-based approach to strengthening legislatures and closer links with civil society could gain more traction. However, that is directed more centrally at promoting good governance for the purpose of furthering development than at democratisation goals sought by party aid and legislative strengtheners in the democracy assistance industry

    Normal state properties of high angle grain boundaries in (Y,Ca)Ba2Cu3O7-delta

    Full text link
    By lithographically fabricating an optimised Wheatstone bridge geometry, we have been able to make accurate measurements of the resistance of grain boundaries in Y1-xCaxBa2Cu3O7-d between the superconducting transition temperature, Tc, and room temperature. Below Tc the normal state properties were assessed by applying sufficiently high currents. The behaviour of the grain boundary resistance versus temperature and of the conductance versus voltage are discussed in the framework charge transport through a tunnel barrier. The influence of misorientation angle, oxygen content, and calcium doping on the normal state properties is related to changes of the height and shape of the grain boundary potential barrier.Comment: 17 pages, 1 table, 5 figures, submitted to PR
    • …
    corecore