17 research outputs found

    Room Temperature Acceptorless Alkane Dehydrogenation from Molecular σ-Alkane Complexes

    Get PDF
    The non-oxidative catalytic dehydrogenation of light alkanes via C-H activation is a highly endothermic process that generally requires high temperatures and/or a sacrificial hydrogen acceptor to overcome unfavorable thermodynamics. This is complicated by alkanes being such poor ligands, meaning that binding at metal centers prior to C-H activation is disfavored. We demonstrate that by biasing the pre-equilibrium of alkane binding, by using solid-state molecular organometallic chemistry (SMOM-chem), well-defined isobutane and cyclohexane σ-complexes, [Rh(Cy2PCH2CH2PCy2)(η: η-(H3C)CH(CH3)2][BArF4] and [Rh(Cy2PCH2CH2PCy2)(η: η-C6H12)][BArF4] can be prepared by simple hydrogenation in a solid/gas single-crystal to single-crystal transformation of precursor alkene complexes. Solid-gas H/D exchange with D2 occurs at all C-H bonds in both alkane complexes, pointing to a variety of low energy fluxional processes that occur for the bound alkane ligands in the solid-state. These are probed by variable temperature solid-state nuclear magnetic resonance experiments and periodic density functional theory (DFT) calculations. These alkane σ-complexes undergo spontaneous acceptorless dehydrogenation at 298 K to reform the corresponding isobutene and cyclohexadiene complexes, by simple application of vacuum or Ar-flow to remove H2. These processes can be followed temporally, and modeled using classical chemical, or Johnson-Mehl-Avrami-Kologoromov, kinetics. When per-deuteration is coupled with dehydrogenation of cyclohexane to cyclohexadiene, this allows for two successive KIEs to be determined [kH/kD = 3.6(5) and 10.8(6)], showing that the rate-determining steps involve C-H activation. Periodic DFT calculations predict overall barriers of 20.6 and 24.4 kcal/mol for the two dehydrogenation steps, in good agreement with the values determined experimentally. The calculations also identify significant C-H bond elongation in both rate-limiting transition states and suggest that the large kH/kD for the second dehydrogenation results from a pre-equilibrium involving C-H oxidative cleavage and a subsequent rate-limiting β-H transfer step

    Single-crystal to cingle-crystal addition of H2to [Ir(iPr-PONOP)(propene)][BArF4] and comparison between solid-state and solution reactivity

    Get PDF
    The EPSRC (EP/M024210/2, EP/T019867/1), SCG Chemicals, The Clarendon Trust, The Leverhulme Trust (RPG-2020-184), Diamond Light Source for funding (PhD studentship to AM).The reactivity of the Ir(I) PONOP pincer complex [Ir(iPr-PONOP)(η2-propene)][BArF4], 6, [iPr-PONOP = 2,6-(iPr2PO)2C6H3N, ArF= 3,5-(CF3)2C6H3] was studied in solution and the solid state, both experimentally, using molecular density functional theory (DFT) and periodic-DFT computational methods, as well as in situ single-crystal to single-crystal (SC-SC) techniques. Complex 6 is synthesized in solution from sequential addition of H2and propene, and then the application of vacuum, to [Ir(iPr-PONOP)(η2-COD)][BArF4], 1, a reaction manifold that proceeds via the Ir(III) dihydrogen/dihydride complex [Ir(iPr-PONOP)(H2)H2][BArF4], 2, and the Ir(III) dihydride propene complex [Ir(iPr-PONOP)(η2-propene)H2][BArF4], 7, respectively. In solution (CD2Cl2) 6 undergoes rapid reaction with H2to form dihydride 7 and then a slow (3 d) onward reaction to give dihydrogen/dihydride 2 and propane. DFT calculations on the molecular cation in solution support this slow, but productive, reaction, with a calculated barrier to rate-limiting propene migratory insertion of 24.8 kcal/mol. In the solid state single-crystals of 6 also form complex 7 on addition of H2in an SC-SC reaction, but unlike in solution the onward reaction (i.e., insertion) does not occur, as confirmed by labeling studies using D2. The solid-state structure of 7 reveals that, on addition of H2to 6, the PONOP ligand moves by 90° within a cavity of [BArF4]-anions rather than the alkene moving. Periodic DFT calculations support the higher barrier to insertion in the solid state (ΔG‡= 26.0 kcal/mol), demonstrating that the single-crystal environment gates onward reactivity compared to solution. H2addition to 6 to form 7 is reversible in both solution and the solid state, but in the latter crystallinity is lost. A rare example of a sigma amine-borane pincer complex, [Ir(iPr-PONOP)H2(η1-H3B·NMe3)][BArF4], 5, is also reported as part of these studies.Peer reviewe

    MicroED Characterization of a Robust Cationic -Alkane Complex Stabilized by the [B(3,5-(SF5)2C6H3)4]– Anion, via On-Grid Solid/Gas Single-Crystal to Single-Crystal Reactivity

    Get PDF
    Microcrystalline (~1 m) [Rh(Cy2PCH2CH2PCy2)(norbornadiene)][S-BArF4], [S-BArF4] = [B(3,5-(SF5)2C6H3)4]–, reacts with H2 in a single-crystal to single-crystal transformation to form the -alkane complex [Rh(Cy2PCH2CH2PCy2)(norbornane)][S-BArF4], for which the structure was determined by microcrystal Electron Diffraction (microED), to 0.95 Å resolution, via an on-grid hydrogenation, and a complementary single-crystal X-ray diffraction study on larger, but challenging to isolate, crystals. Comparison with the [BArF4]– analogue [ArF = 3,5-(CF3)2C5H3)] shows that the [S-BArF4]– anion makes the -alkane complex robust towards decomposition both thermally and when suspended in pentane. Subsequent reactivity with dissolved ethene in a pentane slurry, forms [Rh(Cy2PCH2CH2PCy2)(ethene)2][S-BArF4], and the catalytic dimerisation/isomerisation of ethene to 2-butenes. The increased stability of [S-BArF4]– salts is identified as being due to increased non-covalent interactions in the lattice, resulting in a solid-state molecular organometallic material with desirable stability characteristics

    Selectivity of Rh⋅⋅⋅H−C Binding in a σ-Alkane Complex Controlled by the Secondary Microenvironment in the Solid State

    Get PDF
    By using single-crystal to single-crystal solid-state molecular organometallic (SMOM) techniques, the σ -alkane complex [Rh( t Bu 2 PCH 2 CH 2 CH 2 P t Bu 2 )( η 2 , η 2 -C 7 H 12 )][BAr F 4 ] (Ar F = 3,5-(CF 3 ) 2 C 6 H 3 ) is synthesized and structurally characterized, in which the alkane (norbornane) binds through two exo -C-H···Rh interactions. In contrast, the bis-cyclohexyl phosphine analogue shows endo -alkane binding. Comparison of the two systems, supported by periodic DFT calculations, NCI plots and Hirshfeld surface analyses, trace this different regioselectivity to subtle changes in the local microenvironment surrounding the alkane ligand. A tertiary periodic structure supporting a secondary microenvironment that controls binding at the metal site has parallels with enzymes. The new σ -alkane complex is also a catalyst for solid/gas 1-butene isomerization, and catalyst resting states are identified for this

    A series of crystallographically characterized linear and branched σ-alkane complexes of rhodium : from propane to 3-methylpentane

    Get PDF
    We thank the EPSRC (EP/M024210, and the UK National Crystallography Service), the Leverhulme Trust (RPG-2015-447), and SGC Chemicals for funding, T. M. Boyd (York) for experimental assistance and useful discussions, and Dr. M. Chadwick (Imperial College) for the initial synthesis of [1-isoprene][BAr ] . This work used the ARCHER UK National Supercomputing Service ( http://www.archer.ac.uk ) and the Cirrus UK National Tier-2 HPC Service at the EPCC ( http://www.cirrus.ac.uk ) funded by the University of Edinburgh and the EPSRC (EP/P020267/1).Using solid-state molecular organometallic (SMOM) techniques, in particular solid/gas single-crystal to single-crystal reactivity, a series of σ-alkane complexes of the general formula [Rh(Cy2PCH2CH2PCy2)(ηn:ηm-alkane)][BArF4] have been prepared (alkane = propane, 2-methylbutane, hexane, 3-methylpentane; ArF = 3,5-(CF3)2C6H3). These new complexes have been characterized using single crystal X-ray diffraction, solid-state NMR spectroscopy and DFT computational techniques and present a variety of Rh(I)···H-C binding motifs at the metal coordination site: 1,2-η2:η2 (2-methylbutane), 1,3-η2:η2 (propane), 2,4-η2:η2 (hexane), and 1,4-η1:η2 (3-methylpentane). For the linear alkanes propane and hexane, some additional Rh(I)···H-C interactions with the geminal C-H bonds are also evident. The stability of these complexes with respect to alkane loss in the solid state varies with the identity of the alkane: from propane that decomposes rapidly at 295 K to 2-methylbutane that is stable and instead undergoes an acceptorless dehydrogenation to form a bound alkene complex. In each case the alkane sits in a binding pocket defined by the {Rh(Cy2PCH2CH2PCy2)}+ fragment and the surrounding array of [BArF4]- anions. For the propane complex, a small alkane binding energy, driven in part by a lack of stabilizing short contacts with the surrounding anions, correlates with the fleeting stability of this species. 2-Methylbutane forms more short contacts within the binding pocket, and as a result the complex is considerably more stable. However, the complex of the larger 3-methylpentane ligand shows lower stability. Empirically, there therefore appears to be an optimal fit between the size and shape of the alkane and overall stability. Such observations are related to guest/host interactions in solution supramolecular chemistry and the holistic role of 1°, 2°, and 3° environments in metalloenzymes.Peer reviewe

    A Series of Crystallographically Characterized Linear and Branched s- Alkane Complexes of Rhodium: From Propane to 3-Methylpentane

    Get PDF
    Using solid-state molecular organometallic (SMOM) techniques, in particular solid/gas single-crystal to single-crystal reactivity, a series of σ-alkane complexes of the general formula [Rh(Cy2PCH2CH2PCy2)(ηn:ηm-alkane)][BArF4] have been prepared (alkane = propane, 2-methylbutane, hexane, 3-methylpentane; ArF = 3,5-(CF3)2C6H3). These new complexes have been characterized using single crystal X-ray diffraction, solid-state NMR spectroscopy and DFT computational techniques and present a variety of Rh(I)···H–C binding motifs at the metal coordination site: 1,2-η2:η2 (2-methylbutane), 1,3-η2:η2 (propane), 2,4-η2:η2 (hexane), and 1,4-η1:η2 (3-methylpentane). For the linear alkanes propane and hexane, some additional Rh(I)···H–C interactions with the geminal C–H bonds are also evident. The stability of these complexes with respect to alkane loss in the solid state varies with the identity of the alkane: from propane that decomposes rapidly at 295 K to 2-methylbutane that is stable and instead undergoes an acceptorless dehydrogenation to form a bound alkene complex. In each case the alkane sits in a binding pocket defined by the {Rh(Cy2PCH2CH2PCy2)}+ fragment and the surrounding array of [BArF4]− anions. For the propane complex, a small alkane binding energy, driven in part by a lack of stabilizing short contacts with the surrounding anions, correlates with the fleeting stability of this species. 2-Methylbutane forms more short contacts within the binding pocket, and as a result the complex is considerably more stable. However, the complex of the larger 3-methylpentane ligand shows lower stability. Empirically, there therefore appears to be an optimal fit between the size and shape of the alkane and overall stability. Such observations are related to guest/host interactions in solution supramolecular chemistry and the holistic role of 1°, 2°, and 3° environments in metalloenzymes

    CCDC 2126160 - 2126161 & 2126935 - 2126937: Experimental Crystal Structure Determination

    No full text
    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures

    CCDC 2035752 &2035753: Experimental Crystal Structure Determination

    No full text
    Related Article: Samantha K. Furfari, Bengt E. Tegner, Arron L. Burnage, Laurence R. Doyle, Alexander J. Bukvic, Stuart A. Macgregor, Andrew S. Weller|2021|Chem.-Eur.J.|27|3177|doi:10.1002/chem.20200458

    CCDC 2182238 & 2182239: Experimental Crystal Structure Determination

    No full text
    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures
    corecore