185 research outputs found

    RCSB Protein Data Bank: visualizing groups of experimentally determined PDB structures alongside computed structure models of proteins

    Get PDF
    Recent advances in Artificial Intelligence and Machine Learning (e.g., AlphaFold, RosettaFold, and ESMFold) enable prediction of three-dimensional (3D) protein structures from amino acid sequences alone at accuracies comparable to lower-resolution experimental methods. These tools have been employed to predict structures across entire proteomes and the results of large-scale metagenomic sequence studies, yielding an exponential increase in available biomolecular 3D structural information. Given the enormous volume of this newly computed biostructure data, there is an urgent need for robust tools to manage, search, cluster, and visualize large collections of structures. Equally important is the capability to efficiently summarize and visualize metadata, biological/biochemical annotations, and structural features, particularly when working with vast numbers of protein structures of both experimental origin from the Protein Data Bank (PDB) and computationally-predicted models. Moreover, researchers require advanced visualization techniques that support interactive exploration of multiple sequences and structural alignments. This paper introduces a suite of tools provided on the RCSB PDB research-focused web portal RCSB. org, tailor-made for efficient management, search, organization, and visualization of this burgeoning corpus of 3D macromolecular structure data

    X-ray structures of two proteins belonging to Pfam DUF178 revealed unexpected structural similarity to the DUF191 Pfam family

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pfam is a comprehensive collection of protein domains and families, with a range of well-established information including genome annotation. Pfam has two large series of functionally uncharacterized families, known as Domains of Unknown Function (DUFs) and Uncharacterized Protein Families (UPFs).</p> <p>Results</p> <p>Crystal structures of two proteins from <it>Deinococcus radiodurans </it>and <it>Streptomyces coelicolor </it>belonging to Pfam protein family DUF178 (ID: PF02621) have been determined using Selenium-Single-wavelength Anomalous Dispersion (Se-SAD). Based on the structure, we have identified the putative function for this family of protein.</p> <p>Conclusion</p> <p>Unexpectedly, we found that DUF178 Pfam is remarkably similar to Pfam family DUF191 suggesting that the sequence-based classification alone may not be sufficient to classify proteins into Pfam families.</p

    Structural basis for activation of the therapeutic l-nucleoside analogs 3TC and troxacitabine by human deoxycytidine kinase

    Get PDF
    l-nucleoside analogs represent an important class of small molecules for treating both viral infections and cancers. These pro-drugs achieve pharmacological activity only after enzyme-catalyzed conversion to their tri-phosphorylated forms. Herein, we report the crystal structures of human deoxycytidine kinase (dCK) in complex with the l-nucleosides (−)-β-2′,3′-dideoxy-3′-thiacytidine (3TC)—an approved anti-human immunodeficiency virus (HIV) agent—and troxacitabine (TRO)—an experimental anti-neoplastic agent. The first step in activating these agents is catalyzed by dCK. Our studies reveal how dCK, which normally catalyzes phosphorylation of the natural d-nucleosides, can efficiently phosphorylate substrates with non-physiologic chirality. The capability of dCK to phosphorylate both d- and l-nucleosides and nucleoside analogs derives from structural properties of both the enzyme and the substrates themselves. First, the nucleoside-binding site tolerates substrates with different chiral configurations by maintaining virtually all of the protein-ligand interactions responsible for productive substrate positioning. Second, the pseudo-symmetry of nucleosides and nucleoside analogs in combination with their conformational flexibility allows the l- and d-enantiomeric forms to adopt similar shapes when bound to the enzyme. This is the first analysis of the structural basis for activation of l-nucleoside analogs, providing further impetus for discovery and clinical development of new agents in this molecular class

    Recognition of Polyadenylate RNA by the Poly(A)-Binding Protein

    Get PDF
    AbstractThe cocrystal structure of human poly(A)-binding protein (PABP) has been determined at 2.6 Å resolution. PABP recognizes the 3′ mRNA poly(A) tail and plays critical roles in eukaryotic translation initiation and mRNA stabilization/degradation. The minimal PABP used in this study consists of the N-terminal two RRM-type RNA-binding domains connected by a short linker (RRM1/2). These two RRMs form a continuous RNA-binding trough, lined by an antiparallel β sheet backed by four α helices. The polyadenylate RNA adopts an extended conformation running the length of the molecular trough. Adenine recognition is primarily mediated by contacts with conserved residues found in the RNP motifs of the two RRMs. The convex dorsum of RRM1/2 displays a phylogenetically conserved hydrophobic/acidic portion, which may interact with translation initiation factors and regulatory proteins

    UPF201 Archaeal Specific Family Members Reveal Structural Similarity to RNA-Binding Proteins but Low Likelihood for RNA-Binding Function

    Get PDF
    We have determined X-ray crystal structures of four members of an archaeal specific family of proteins of unknown function (UPF0201; Pfam classification: DUF54) to advance our understanding of the genetic repertoire of archaea. Despite low pairwise amino acid sequence identities (10–40%) and the absence of conserved sequence motifs, the three-dimensional structures of these proteins are remarkably similar to one another. Their common polypeptide chain fold, encompassing a five-stranded antiparallel β-sheet and five α-helices, proved to be quite unexpectedly similar to that of the RRM-type RNA-binding domain of the ribosomal L5 protein, which is responsible for binding the 5S- rRNA. Structure-based sequence alignments enabled construction of a phylogenetic tree relating UPF0201 family members to L5 ribosomal proteins and other structurally similar RNA binding proteins, thereby expanding our understanding of the evolutionary purview of the RRM superfamily. Analyses of the surfaces of these newly determined UPF0201 structures suggest that they probably do not function as RNA binding proteins, and that this domain specific family of proteins has acquired a novel function in archaebacteria, which awaits experimental elucidation

    Federating structural models and data:Outcomes from a workshop on archiving integrative structures

    Get PDF
    Structures of biomolecular systems are increasingly computed by integrative modeling. In this approach, a structural model is constructed by combining information from multiple sources, including varied experimental methods and prior models. In 2019, a Workshop was held as a Biophysical Society Satellite Meeting to assess progress and discuss further requirements for archiving integrative structures. The primary goal of the Workshop was to build consensus for addressing the challenges involved in creating common data standards, building methods for federated data exchange, and developing mechanisms for validating integrative structures. The summary of the Workshop and the recommendations that emerged are presented here

    Alcohol intake and risk of colorectal cancer: results from the UK Dietary Cohort Consortium.

    Get PDF
    BACKGROUND: Epidemiological studies have suggested that excessive alcohol intake increases colorectal cancer (CRC) risk. However, findings regarding tumour subsites and sex differences have been inconsistent. METHODS: We investigated the prospective associations between alcohol intake on overall and site- and sex-specific CRC risk. Analyses were conducted on 579 CRC cases and 1996 matched controls nested within the UK Dietary Cohort Consortium using standardised data obtained from food diaries as a main nutritional method and repeated using data from food frequency questionnaire (FFQ). RESULTS: Compared with individuals in the lightest category of drinkers (>0-or=45 g per day. No clear associations were observed between site-specific CRC risk and alcohol intake in either sex. Analyses using FFQ showed similar results. CONCLUSION: We found no significantly increased risk of CRC up to 30 g per day of alcohol intake within the UK Dietary Cohort Consortium
    • …
    corecore