96 research outputs found
An Evaluation of the Genetic Structure of Mapleleaf Mussels (Quadrula quadrula) in the Lake Erie Watershed
Physical barriers, habitat fragmentation, invasive species and geographic distance have isolated remnant populations of unionids in Great Lakes coastal refuges. Dreissenid species (Dreissena polymorpha and Dreissena rostriformis bugensis) may be the greatest threat to the survival of unionids in the Great Lakes since their introduction in the late 1980s and early 1990s; however, native unionids remain in coastal habitats of western Lake Erie. One of the most abundant unionid species in Lake Erie, Quadrula quadrula, was collected along coastal areas within the lake and from three tributaries, the Maumee River, Huron River (Ohio), and Grand River (Ontario, Canada) and genotyped at six polymorphic microsatellite loci to determine population structure. There was evidence of genetic differentiation by geographic distance, and genotypes clustered into three geographic regions: Lake Erie, the Maumee River, and the Grand River. Lack of fine-scale genetic differentiation, admixture among these regions, and significant isolation by distance, indicate connectivity and are consistent with a stepping-stone model of divergence across the lake and its tributaries. A diverse gene pool remains should Q. quadrula be able to repopulate more of their historic distribution across the region, but studies of other unionid species are needed to determine whether low levels of differentiation among lake populations or divergence from tributary populations is a common pattern
Modeling Habitat of Freshwater Mussels (Bivalvia:Unionidae) in the Lower Great Lakes 25 Years after the Dreissena Invasion
Finding remnant populations of species that are of conservation concern can be difficult, particularly in aquatic habitats. Models of ecological niches can aid in the discovery of refuges. Remnant populations of native freshwater mussels (unionids) have been found in Lakes Erie and St Clair. Our goals were to predict undiscovered refuges in Lake Ontario based on habitat analysis from Lake Erie and to conduct surveys to test those predictions. We built a presence-only model on environmental data including attributes of the benthic zone and shoreline where mussels occurred in Lake Erie. We found a link between small- and large-scale variables related to unionid persistence. Bathymetry, fetch, and shoreline geomorphology contributed most to the model. These variables correspond to local-scale environmental factors important for unionid survival, including presence of vegetation and substrate composition, which explained ∼22% of the variance in presence, abundance, and richness. The model predicted that 0.8% of the near-shore area of Lake Ontario should be habitat for unionids. In surveys at 34 locations on the USA shore of Lake Ontario, we found 1800 unionids of 11 species and showed that areasOntario, a result signifying generality of our model for conservation approaches to freshwater mussels
Competitive Replacement of Invasive Congeners May Relax Impact on Native Species: Interactions among Zebra, Quagga, and Native Unionid Mussels
Determining when and where the ecological impacts of invasive species will be most detrimental and whether the effects of multiple invaders will be superadditive, or subadditive, is critical for developing global management priorities to protect native species in advance of future invasions. Over the past century, the decline of freshwater bivalves of the family Unionidae has been greatly accelerated by the invasion of Dreissena. The purpose of this study was to evaluate the current infestation rates of unionids by zebra (Dreissena polymorpha) and quagga (D. rostriformis bugensis) mussels in the lower Great Lakes region 25 years after they nearly extirpated native unionids. In 2011–2012, we collected infestation data for over 4000 unionids from 26 species at 198 nearshore sites in lakes Erie, Ontario, and St. Clair, the Detroit River, and inland Michigan lakes and compared those results to studies from the early 1990s. We found that the frequency of unionid infestation by Dreissena recently declined, and the number of dreissenids attached to unionids in the lower Great Lakes has fallen almost ten-fold since the early 1990s. We also found that the rate of infestation depends on the dominant Dreissena species in the lake: zebra mussels infested unionids much more often and in greater numbers. Consequently, the proportion of infested unionids, as well as the number and weight of attached dreissenids were lower in waterbodies dominated by quagga mussels. This is the first large-scale systematic study that revealed how minor differences between two taxonomically and functionally related invaders may have large consequences for native communities they invade
Complete mitochondrial genomes of the freshwater mussels Amblema plicata (Say, 1817), Pleurobema oviforme (Conrad, 1834), and Popenaias popeii (Lea, 1857) (Bivalvia: Unionidae: Ambleminae)
Freshwater mussels are a critically imperiled group of mollusks that play key ecological roles and provide important services to humans. The Ambleminae is the only subfamily of these mussels, endemic to North America. Complete mitogenomes have only been sequenced for two of five tribes of the subfamily. Pleurobema oviforme, Amblema plicata, and Popenaias popeii each belong to tribes Pleurobemini, Amblemini, and Popenaidini, respectively, and have not had published mitogenomes. Thus, this study aims to present the complete mitogenomes for these species, to provide a phylogeny of the Ambleminae and confirm the gene arrangements with representation from each of its tribes. The newly sequenced mitogenomes range from 15,852 to 15,993 nucleotides, are composed of 13 PCGs, 22 tRNAs, and two rRNAs and all share the same (UF1) gene order.This work was supported by Portuguese Foundation for Science and
Technology (FCT) [grant number ConBioMics/BI-Lic/2019-037 (JTT), grant
number SFRH/BD/137935/2018 (AGS)]; COMPETE 2020, Portugal 2020
and the European Union through the ERDF, and by Portuguese
Foundation for Science and Technology (FCT) through national funds
[UID/Multi/04423/2019] under project ConBiomics: the missing approach
for the Conservation of Bivalves Project, and [project number NORTE-01-
0145-FEDER-030286]. Fieldwork in Texas was funded by the U.S. Fish and Wildlife Service, and Texas Parks and Wildlife Department (TPWD) as a Joint Traditional Section 6 Project 407348.info:eu-repo/semantics/publishedVersio
Doppler confirmation of TESS planet candidate TOI1408.01: grazing transit and likely eccentric orbit
We report an independent Doppler confirmation of the TESS planet candidate
orbiting an F-type main sequence star TOI-1408 located 140 pc away. We present
a set of radial velocities obtained with a high-resolution fiber-optic
spectrograph FFOREST mounted at the SAO RAS 6-m telescope (BTA-6). Our
self-consistent analysis of these Doppler data and TESS photometry suggests a
grazing transit such that the planet obscures its host star by only a portion
of the visible disc. Because of this degeneracy, the radius of TOI-1408.01
appears ill-determined with lower limit about 1 R,
significantly larger than in the current TESS solution. We also derive the
planet mass of ~ and the orbital period
days, thus making this object a typical hot Jupiter, but with a significant
orbital eccentricity of . Our solution may suggest the planet is
likely to experience a high tidal eccentricity migration at the stage of
intense orbital rounding, or may indicate possible presence of other unseen
companions in the system, yet to be detected.Comment: 5 pages, 3 figure
Statistics of Magnetic Fields for OB Stars
Based on an analysis of the catalog of magnetic fields, we have investigated
the statistical properties of the mean magnetic fields for OB stars. We show
that the mean effective magnetic field of a star can be used as a
statistically significant characteristic of its magnetic field. No correlation
has been found between the mean magnetic field strength and
projected rotational velocity of OB stars, which is consistent with the
hypothesis about a fossil origin of the magnetic field. We have constructed the
magnetic field distribution function for B stars, , that has a
power-law dependence on with an exponent of . We have
found a sharp decrease in the function F for {\cal B}\lem 400 G
that may be related to rapid dissipation of weak stellar surface magnetic
fields.Comment: 22 pages, 7 figures, accepted Astronomy Letters, 2010, vol.36, No.5,
pp.370-379, contact E-mail: [email protected]
Eight exoplanet candidates in SAO survey
Here we present eight new candidates for exoplanets detected by the transit
method at the Special Astrophysical Observatory of the Russian Academy of
Sciences. Photometric observations were performed with a 50-cm robotic
telescope during the second half of 2020. We detected transits with depths of
and periods in the light curves
of stars with magnitudes of . All considered stars are
classified as dwarfs with radii of (with the
uncertainty for one star up to ). We estimated the candidate radii
(all are greater than 1.4 times the Jovian radius), semi-major axes of their
orbits (), and other orbital parameters by modelling. We report
the light curves with transits for two stars obtained in 2022 based on
individual observations.Comment: 16 pages, 14 figures, 3 table
Detection of regular low-amplitude photometric variability of the magnetic dwarf WD0009+501. On the possibility of photometric investigation of exoplanets on the basis of 1-meter class telescopes of the special and crimean astrophysical observatories
© 2015, Pleiades Publishing, Ltd. We present the results of photometric observations of the weak magnetic white dwarf WD0009+501. The observations were carried out for two years with the 1-m telescopes of the Special and Crimean Astrophysical Observatories. As a result of these observations, we detected regular V -band luminosity variations with a period of P ≈ 8 hours. The amplitude of the variability is stable on timescales greater than two years and amounts to 11 ± 1 mmag. The difference in the variability amplitude from observations with different telescopes is 1–3 mmag. The result is interpreted within the concept of a rotation-modulated variability of magnetic properties of the star’s atmosphere. We also discuss a possible variability due to the presence of planetary companions around stars of this type. The results of monitoring were used to explore the capabilities of the telescopes for exoplanet investigation. We studied the dependences between the characteristic times of exposures, magnitudes of the objects, and a threshold level of the expected variability amplitudes for all the telescopes involved in our program. A program of exoplanet monitoring with the mentioned telescopes was drawn up for the next few years based on the results of the study
Search for and study of photometric variability in magnetic white dwarfs
© 2017, Pleiades Publishing, Ltd.We report the results of photometric observations of a number of magnetic white dwarfs in order to search for photometric variability in these stars. These V-band observations revealed significant variability in the classical highly magnetized white dwarf GRW+70◦8247 with a likely period from several days to several dozen days and a half-amplitude of about 0.m 04. Our observations also revealed the variability of the well-known white dwarf GD229. The half amplitude of its photometric variability is equal to about 0.m 005, and the likely period of this degenerate star lies in the 10–20 day interval. This variability is most likely due to the rotation of the stars considered.We also discuss the peculiarities of the photometric variability in a number of other white dwarfs. We present the updated “magnetic field–rotation period” diagram for the white dwarfs
- …