1,341 research outputs found

    Quantum interference with beamlike type-II spontaneous parametric down-conversion

    Full text link
    We implement experimentally a method to generate photon-number-path and polarization entangled photon pairs using ``beamlike'' type-II spontaneous parametric down-conversion (SPDC), in which the signal-idler photon pairs are emitted as two separate circular beams with small emission angles rather than as two diverging cones.Comment: 4 pages, two-colum

    Polarization state of a biphoton: quantum ternary logic

    Get PDF
    Polarization state of biphoton light generated via collinear frequency-degenerate spontaneous parametric down-conversion is considered. A biphoton is described by a three-component polarization vector, its arbitrary transformations relating to the SU(3) group. A subset of such transformations, available with retardation plates, is realized experimentally. In particular, two independent orthogonally polarized beams of type-I biphotons are transformed into a beam of type-II biphotons. Polarized biphotons are suggested as ternary analogs of two-state quantum systems (qubits)

    Controlled topological transitions in thin film phase separation

    Get PDF
    In this paper the evolution of a binary mixture in a thin-film geometry with a wall at the top and bottom is considered. By bringing the mixture into its miscibility gap so that no spinodal decomposition occurs in the bulk, a slight energetic bias of the walls towards each one of the constituents ensures the nucleation of thin boundary layers that grow until the constituents have moved into one of the two layers. These layers are separated by an interfacial region where the composition changes rapidly. Conditions that ensure the separation into two layers with a thin interfacial region are investigated based on a phase-field model. Using matched asymptotic expansions a corresponding sharp-interface problem for the location of the interface is established. It is then argued that this newly created two-layer system is not at its energetic minimum but destabilizes into a controlled self-replicating pattern of trapezoidal vertical stripes by minimizing the interfacial energy between the phases while conserving their area. A quantitative analysis of this mechanism is carried out via a thin-film model for the free interfaces, which is derived asymptotically from the sharp-interface model.Comment: Submitted 23/12/201

    Observation of the Little-Parks Oscillations in a System of Asymmetric Superconducting Rings

    Full text link
    Little-Parks oscillations are observed in a system of 110 series-connected aluminum rings 2000 nm in diameter with the use of measuring currents from 10 nA to 1000 nA. The measurements show that the amplitude and character of the oscillations are independent of the relation between the measuring current and the amplitude of the persistent current. By using asymmetric rings, it is demonstrated that the persistent current has clockwise or contra-clockwise direction. This means that the total current in one of the semi-rings may be directed against the electric field at measurement of the Little-Parks oscillations. The measurements at zero and low measuring current have revealed that the persistent current, like the conventional circulating current, causes a potential difference on the semi-rings with different cross sections in spite of the absence of the Faraday's voltage.Comment: 5 pages, 6 figure

    Energy Localization in the Peyrard-Bishop DNA model

    Full text link
    We study energy localization on the oscillator-chain proposed by Peyrard and Bishop to model the DNA. We search numerically for conditions with initial energy in a small subgroup of consecutive oscillators of a finite chain and such that the oscillation amplitude is small outside this subgroup for a long timescale. We use a localization criterion based on the information entropy and we verify numerically that such localized excitations exist when the nonlinear dynamics of the subgroup oscillates with a frequency inside the reactive band of the linear chain. We predict a mimium value for the Morse parameter (μ>2.25)(\mu >2.25) (the only parameter of our normalized model), in agreement with the numerical calculations (an estimate for the biological value is μ=6.3\mu =6.3). For supercritical masses, we use canonical perturbation theory to expand the frequencies of the subgroup and we calculate an energy threshold in agreement with the numerical calculations
    corecore