1,902 research outputs found

    Modeling of Surface Damage at the Si/SiO2_2-interface of Irradiated MOS-capacitors

    Full text link
    Surface damage caused by ionizing radiation in SiO2_2 passivated silicon particle detectors consists mainly of the accumulation of a positively charged layer along with trapped-oxide-charge and interface traps inside the oxide and close to the Si/SiO2_2-interface. High density positive interface net charge can be detrimental to the operation of a multi-channel nn-on-pp sensor since the inversion layer generated under the Si/SiO2_2-interface can cause loss of position resolution by creating a conduction channel between the electrodes. In the investigation of the radiation-induced accumulation of oxide charge and interface traps, a capacitance-voltage characterization study of n/γ\gamma- and γ\gamma-irradiated Metal-Oxide-Semiconductor (MOS) capacitors showed that close agreement between measurement and simulation were possible when oxide charge density was complemented by both acceptor- and donor-type deep interface traps with densities comparable to the oxide charges. Corresponding inter-strip resistance simulations of a nn-on-pp sensor with the tuned oxide charge density and interface traps show close agreement with experimental results. The beneficial impact of radiation-induced accumulation of deep interface traps on inter-electrode isolation may be considered in the optimization of the processing parameters of isolation implants on nn-on-pp sensors for the extreme radiation environments.Comment: Corresponding author: T. Peltola. 24 pages, 17 figures, 6 table

    Association between fat-soluble vitamins and self-reported health status: A cross-sectional analysis of the MARK-AGE cohort

    Get PDF
    Self-rated health (SRH) is associated with higher risk of death. Since low plasma levels of fat-soluble vitamins are related to mortality, we aimed to assess whether plasma concentrations of vitamins A, D and E were associated with SRH in the MARK-AGE study. We included 3158 participants (52% female) aged between 35-75 years. Cross-sectional data were collected via questionnaires. An enzyme immunoassay quantified 25-hydroxyvitamin D and HPLC determined α-tocopherol and retinol plasma concentrations. The median 25-hydroxyvitamin D and retinol concentrations differed significantly (P<0.001) between SRH categories, and were lower in the combined fair/poor category versus the excellent, very good, good categories (25-hydroxvitamin D: 40.8 vs. 51.9, 49.3, 46.7 nmol/l, respectively; retinol: 1.67 vs. 1.75, 1.74, 1.70 μmol/l, respectively). Both vitamin D and retinol status were independently associated with fair/poor SRH in multiple regression analyses: adjusted ORs (95% CI) for the vitamin D insufficiency, deficiency, severe deficiency categories were 1.33 (1.06-1.68), 1.50 (1.17-1.93), and 1.83 (1.34-2.50) respectively; P=0.015, P=0.001, P<0.001, and for the second/third/fourth retinol quartiles: 1.44 (1.18-1.75), 1.57 (1.28-1.93), 1.49 (1.20-1.84); all P<0.001. No significant associations were reported for α-tocopherol quartiles. Lower vitamin A and D status emerged as independent markers for fair/poor SRH. Further insights into the long-term implications of these modifiable nutrients on health status are warranted

    In situ SR-XRD analysis of corrosion product formation during ‘pseudo-passivation’ of carbon steel in CO2-containing aqueous environments

    Get PDF
    In situ Synchrotron Radiation X-ray Diffraction (SR-XRD) is employed to follow the evolution of corrosion products on X65 carbon steel in a CO2-containing aqueous environment (80 °C, pH 6.3–7.3). A custom-designed flow cell is used to follow the real-time concomitant changes in electrochemical behaviour and corrosion product growth during stages of both natural and potentiodynamically driven ‘pseudo-passivation’. We show that no deteca crystalline magnetite (Fe3O4) phase forms during ‘pseudo-passivation’ across all conditions studied. Furthermore, the results suggest the significant ennoblement observed during ‘pseudo-passivation’ in these experiments can be strongly related to the accumulation of iron carbonate (FeCO3) on the steel surface

    Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV

    Get PDF
    The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8  TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum
    corecore