2,073 research outputs found

    A review of iron carbonate (FeCO₃) formation in the oil and gas industry

    Get PDF
    This paper reviews the information in the literature relating to FeCO₃ formation in the context of oil and gas production. Numerous factors which influence the kinetics, physical properties and protective nature of FeCO₃ are considered in addition to a review of semi-empirical models developed to predict precipitation/corrosion layer accumulation rate. The limitations of current models are discussed and the challenges of conducting deposition studies onto steel surfaces in a controlled environment using laboratory based techniques are also reviewed. Finally, more recently employed experimental techniques are considered in their potential to provide a further understanding of FeCO₃ and mixed carbonate kinetics

    Modeling of Surface Damage at the Si/SiO2_2-interface of Irradiated MOS-capacitors

    Full text link
    Surface damage caused by ionizing radiation in SiO2_2 passivated silicon particle detectors consists mainly of the accumulation of a positively charged layer along with trapped-oxide-charge and interface traps inside the oxide and close to the Si/SiO2_2-interface. High density positive interface net charge can be detrimental to the operation of a multi-channel nn-on-pp sensor since the inversion layer generated under the Si/SiO2_2-interface can cause loss of position resolution by creating a conduction channel between the electrodes. In the investigation of the radiation-induced accumulation of oxide charge and interface traps, a capacitance-voltage characterization study of n/γ\gamma- and γ\gamma-irradiated Metal-Oxide-Semiconductor (MOS) capacitors showed that close agreement between measurement and simulation were possible when oxide charge density was complemented by both acceptor- and donor-type deep interface traps with densities comparable to the oxide charges. Corresponding inter-strip resistance simulations of a nn-on-pp sensor with the tuned oxide charge density and interface traps show close agreement with experimental results. The beneficial impact of radiation-induced accumulation of deep interface traps on inter-electrode isolation may be considered in the optimization of the processing parameters of isolation implants on nn-on-pp sensors for the extreme radiation environments.Comment: Corresponding author: T. Peltola. 24 pages, 17 figures, 6 table

    Iron carbonate formation kinetics onto corroding and pre-filmed carbon steel surfaces in carbon dioxide corrosion environments

    Get PDF
    This work investigates the Corrosion Layer Accumulation Rate (CLAR) of iron carbonate (FeCO3) onto X65 carbon steel in carbon dioxide containing environments using the direct method of corrosion layer mass gain measurement. Glass cell experiments were performed at 80 °C and pH 6.3 or 6.8 over a range of bulk FeCO3 saturation ratios using both actively corroding carbon steel and steel pre-filmed with FeCO3. The CLARs obtained from experiments using actively corroding samples displayed strong agreement with the most recently developed precipitation model by Sun and Nesic at high supersaturation for pH 6.3 and 6.8, but a disparity at low supersaturation for the solution at pH 6.8. The observed discrepancy was attributed to the significant difference in surface saturation ratio between the two conditions when the steel is actively corroding. CLARs determined for pre-FeCO3 filmed carbon steel show that the kinetics of FeCO3 formation reduce significantly once the film establishes a protective barrier at lower values of bulk supersaturation. The results highlight the contrast between surface layer accumulation kinetics in the early stages of growth and those encountered in the long-term after the development of a protective film

    In situ SR-XRD study of FeCO₃ precipitation kinetics onto carbon steel in CO₂-containing environments: The influence of brine pH

    Get PDF
    The growth of iron carbonate (FeCO₃) on the internal walls of carbon steel pipelines used for oil and gas transportation can reduce internal corrosion significantly. Solution pH can be considered as one of the most influential factors with regards to the kinetics, morphology and protection afforded by FeCO₃ films. This paper presents results from a recently developed in situ Synchrotron Radiation-X-ray Diffraction (SR-XRD) flow cell integrated with electrochemistry for corrosion measurements. The cell was used to follow the nucleation and growth kinetics of corrosion products on X65 carbon steel surfaces in a carbon dioxide (CO₂)-saturated 3.5 wt.% NaCl brine at 80 °C and a flow rate of 0.1 m/s over a range of solution pH values (6.3, 6.8 and 7). In all conditions, FeCO₃ was identified as the only crystalline phase to form. Electrochemical results coupled with post-test surface analysis indicate that at higher pH, larger portions of the surface become covered faster with thinner, more protective films consisting of smaller, denser and more compact crystals. The comparison between XRD main peak area intensities and FeCO₃ surface coverage, mass and volume indicates a qualitative relationship between these parameters at each pH, providing valuable information on the kinetics of film growth

    Integrated healthcare and the dilemma of public health emergencies

    Get PDF
    Traditional healthcare services have demonstrated structural shortcomings in the delivery of patient care and enforced numerous elements of integration in the delivery of healthcare services. Integrated healthcare aims at providing all healthcare that makes humans healthy. However, with mainly chronically ill people and seniors, typically suffering from numerous comorbidities and diseases, being recruited for care, there is a need for a change in the healthcare service structure beyond direct-patient care to be compatible in peacetime and during public health emergencies. This article’s objective is to discuss the opportunities and obstacles for increasing the effectiveness of healthcare through improved integration. A rapid evidence review approach was used by performing a systematic followed by a non-systematic literature review and content analysis. The results confirmed that integrated healthcare systems play an increasingly important role in healthcare system reforms undertaken in European Union countries. The essence of these changes is the transition from the episodic treatment of acute diseases to the provision of coordinated medical services, focused on chronic cases, prevention, and ensuring patient continuity. However, integrated healthcare, at a level not yet fully defined, will be necessary if we are to both define and attain the integrated practice of both global health and global public health emergencies. This paper attains the necessary global challenges to integrate healthcare effectively at every level of society. There is a need for more knowledge to effectively develop, support, and disseminate initiatives related to coordinated healthcare in the individual healthcare systems

    Siderite micro-modification for enhanced corrosion protection

    Get PDF
    Production of oil and gas results in the creation of carbon dioxide (CO₂) which when wet is extremely corrosive owing to the speciation of carbonic acid. Severe production losses and safety incidents occur when carbon steel (CS) is used as a pipeline material if corrosion is not properly managed. Currently corrosion inhibitor (CI) chemicals are used to ensure that the material degradation rates are properly controlled; this imposes operational constraints, costs of deployment and environmental issues. In specific conditions, a naturally growing corrosion product known as siderite or iron carbonate (FeCO₃) precipitates onto the internal pipe wall providing protection from electrochemical degradation. Many parameters influence the thermodynamics of FeCO₃ precipitation which is generally favoured at high values of temperatures, pressure and pH. In this paper, a new approach for corrosion management is presented; micro-modifying the corrosion product. This novel mitigation approach relies on enhancing the crystallisation of FeCO₃ and improving its density, protectiveness and mechanical properties. The addition of a silicon-rich nanofiller is shown to augment the growth of FeCO₃ at lower pH and temperature without affecting the bulk pH. The hybrid FeCO₃ exhibits superior general and localised corrosion properties. The findings herein indicate that it is possible to locally alter the environment in the vicinity of the corroding steel in order to grow a dense and therefore protective FeCO₃ film via the incorporation of hybrid organic-inorganic silsesquioxane moieties. The durability and mechanical integrity of the film is also significantly improved

    In situ SR-XRD analysis of corrosion product formation during ‘pseudo-passivation’ of carbon steel in CO2-containing aqueous environments

    Get PDF
    In situ Synchrotron Radiation X-ray Diffraction (SR-XRD) is employed to follow the evolution of corrosion products on X65 carbon steel in a CO2-containing aqueous environment (80 °C, pH 6.3–7.3). A custom-designed flow cell is used to follow the real-time concomitant changes in electrochemical behaviour and corrosion product growth during stages of both natural and potentiodynamically driven ‘pseudo-passivation’. We show that no deteca crystalline magnetite (Fe3O4) phase forms during ‘pseudo-passivation’ across all conditions studied. Furthermore, the results suggest the significant ennoblement observed during ‘pseudo-passivation’ in these experiments can be strongly related to the accumulation of iron carbonate (FeCO3) on the steel surface
    • …
    corecore