212 research outputs found

    Three-Dimensional Digital Capture of Head Size in Neonates – A Method Evaluation

    Get PDF
    Introduction: The quality of neonatal care is mainly determined by long-term neurodevelopmental outcome. The neurodevelopment of preterm infants is related to postnatal head growth and depends on medical interventions such as nutritional support. Head circumference (HC) is currently used as a two-dimensional measure of head growth. Since head deformities are frequently found in preterm infants, HC may not always adequately reflect head growth. Laser aided head shape digitizers offer semiautomatic acquisition of HC and cranial volume (CrV) and could thus be useful in describing head size more precisely. Aims: 1) To evaluate reproducibility of a 3D digital capture system in newborns. 2) To compare manual and digital HC measurements in a neonatal cohort. 3) To determine correlation of HC and CrV and predictive value of HC. Methods: Within a twelve-month period data of head scans with a laser shape digitizer were analysed. Repeated measures were used for method evaluation. Manually and digitally acquired HC was compared. Regression analysis of HC and CrV was performed. Results: Interobserver reliability was excellent for HC (bias-0.005%, 95% Limits of Agreement (LoA) −0.39–0.39%) and CrV (bias1.5%, 95%LoA-0.8–3.6%). Method comparison data was acquired from 282 infants. It revealed interchangeability of the methods (bias-0.45%; 95%LoA-4.55–3.65%) and no significant systematic or proportional differences. HC and CrV correlated (r2 = 0.859, p<0.001), performance of HC predicting CrV was poor (RSD ±24 ml). Correlation was worse in infants with lower postmenstrual age (r2 = 0.745) compared to older infants (r2 = 0.843). Discussion: The current practice of measuring HC for describing head growth in preterm infants could be misleading since it does not represent a 3D approach. CrV can vary substantially in infants of equal HC. The 3D laser scanner represents a new and promising method to provide reproducible data of CrV and HC. Since it does not provide data on cerebral structures, additional imaging is required

    Analyzing support of postnatal transition in term infants after c-section

    Get PDF
    Background: Whereas good data are available on the resuscitation of infants, little is known regarding support of postnatal transition in low-risk term infants after c-section. The present study was performed to describe current delivery room (DR) management of term infants born by c-section in our institution by analyzing videos that were recorded within a quality assurance program. Methods: DR- management is routinely recorded within a quality assurance program. Cross-sectional study of videos of term infants born by c-section. Videos were analyzed with respect to time point, duration and number of all medical interventions. Study period was between January and December 2012. Results: 186 videos were analyzed. The majority of infants (73%) were without support of postnatal transition. In infants with support of transition, majority of infants received respiratory support, starting in median after 3.4 minutes (range 0.4-14.2) and lasting for 8.8 (1.5-28.5) minutes. Only 33% of infants with support had to be admitted to the NICU, the remaining infants were returned to the mother after a median of 13.5 (8-42) minutes. A great inter- and intra-individual variation with respect to the sequence of interventions was found. Conclusions: The study provides data for an internal quality improvement program and supports the benefit of using routine video recording of DR-management. Furthermore, data can be used for benchmarking with current practice in other centers

    Continuous Noninvasive Monitoring of Lung Recruitment during High-Frequency Oscillatory Ventilation by Electrical Impedance Measurement: An Animal Study

    Get PDF
    Background: Ventilatory pressures should target the range between the upper and lower inflection point of the pressure volume curve in order to avoid atelecto- and volutrauma. During high-frequency oscillatory ventilation (HFOV), this range is difficult to determine. Quadrant impedance measurement (QIM) has recently been shown to allow accurate and precise measurement of lung volume changes during conventional mechanical ventilation. Objectives: To investigate if QIM can be used to determine a static pressure-residual impedance curve during a recruitment-derecruitment manoeuvre on HFOV and to monitor the time course of alveolar recruitment after changing mean airway pressure (MAP). Methods: An incremental and decremental MAP trial (6 cm H₂O to 27 cm H₂O) was conducted in five surfactantdepleted newborn piglets during HFOV. Ventilatory, gas exchange and haemodynamic parameters were recorded. Continuous measurement of thoracic impedance change was performed. Results: Mean residual impedance (RI) increased with each stepwise increase of MAP resulting in a total mean increase of +26.5% (±4.0) at the highest MAP (27 cm H₂O) compared to baseline ventilation at 6 cm H₂O. Upon decreasing MAP levels, RI fell more slowly compared to its ascent; 83.4% (±19.1) and 84.8% (±16.4) of impedance changes occurred in the first 5 min after an increase or decrease in airway pressure, respectively. Conclusions: QIM could be used for continuous monitoring of thoracic impedance and determination of the pressure-RI curve during HFOV. The method could prove to be a promising bedside method for the monitoring of lung recruitment during HFOV in the future

    Alterations of alveolar type II cells and intraalveolar surfactant after bronchoalveolar lavage and perfluorocarbon ventilation. An electron microscopical and stereological study in the rat lung

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Repeated bronchoalveolar lavage (BAL) has been used in animals to induce surfactant depletion and to study therapeutical interventions of subsequent respiratory insufficiency. Intratracheal administration of surface active agents such as perfluorocarbons (PFC) can prevent the alveolar collapse in surfactant depleted lungs. However, it is not known how BAL or subsequent PFC administration affect the intracellular and intraalveolar surfactant pool.</p> <p>Methods</p> <p>Male wistar rats were surfactant depleted by BAL and treated for 1 hour by conventional mechanical ventilation (<it>Lavaged-Gas</it>, n = 5) or partial liquid ventilation with PF 5080 (<it>Lavaged-PF5080</it>, n = 5). For control, 10 healthy animals with gas (<it>Healthy-Gas</it>, n = 5) or PF5080 filled lungs (<it>Healthy-PF5080</it>, n = 5) were studied. A design-based stereological approach was used for quantification of lung parenchyma and the intracellular and intraalveolar surfactant pool at the light and electron microscopic level.</p> <p>Results</p> <p>Compared to <it>Healthy</it>-lungs, <it>Lavaged</it>-animals had more type II cells with lamellar bodies in the process of secretion and freshly secreted lamellar body-like surfactant forms in the alveoli. The fraction of alveolar epithelial surface area covered with surfactant and total intraalveolar surfactant content were significantly smaller in <it>Lavaged</it>-animals. Compared with <it>Gas</it>-filled lungs, both <it>PF5080</it>-groups had a significantly higher total lung volume, but no other differences.</p> <p>Conclusion</p> <p>After BAL-induced alveolar surfactant depletion the amount of intracellularly stored surfactant is about half as high as in healthy animals. In lavaged animals short time liquid ventilation with PF5080 did not alter intra- or extracellular surfactant content or subtype composition.</p

    Frequency and prognostic implications of KMT2A rearrangements in children with precursor B-cell lymphoma

    Get PDF
    Our analysis is limited regarding to the molecular features of BCP-L, since pediatric BCP-L is rare compared to BCP-ALL, and we were limited to archival BCP-L tissue that were small and preserved in FFPE blocks. Nevertheless, our data suggest that BCP-L is a valuable model for studying pathogenic mechanisms of BCP neoplasms, especially those with KMT2A aberrations. Detailed molecular genetic analysis will be required to understand which mechanisms lead to the clinical presentation as lymphoma instead of leukemia, and whether this clinical presentation is driven by genetic features of the tumor, or host dependent factors such as immunological status

    Anthropometric landmarking for diagnosis of cranial deformities: validation of an automatic approach and comparison with intra- and interobserver variability

    Get PDF
    Shape analysis of infant’s heads is crucial to diagnose cranial deformities and evaluate head growth. Currently available 3D imaging systems can be used to create 3D head models, promoting the clinical practice for head evaluation. However, manual analysis of 3D shapes is difficult and operator-dependent, causing inaccuracies in the analysis. This study aims to validate an automatic landmark detection method for head shape analysis. The detection results were compared with manual analysis in three levels: (1) distance error of landmarks; (2) accuracy of standard cranial measurements, namely cephalic ratio (CR), cranial vault asymmetry index (CVAI), and overall symmetry ratio (OSR); and (3) accuracy of the final diagnosis of cranial deformities. For each level, the intra- and interobserver variability was also studied by comparing manual landmark settings. High landmark detection accuracy was achieved by the method in 166 head models. A very strong agreement with manual analysis for the cranial measurements was also obtained, with intraclass correlation coefficients of 0.997, 0.961, and 0.771 for the CR, CVAI, and OSR. 91% agreement with manual analysis was achieved in the diagnosis of cranial deformities. Considering its high accuracy and reliability in different evaluation levels, the method showed to be feasible for use in clinical practice for head shape analysis.This work was funded by projects ‘‘NORTE-01- 0145-FEDER-000045’’ and ‘‘NORTE-01-0145-FEDER-000059’’, supported by Northern Portugal Regional Operational Programme (Norte2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER). - This project was also funded by national funds (PIDDAC), through the FCT – Fundação para a Ciência e Tecnologia and FCT/MCTES under the scope of the projects UIDB/05549/2020, UIDP/05549/2020 and Lasi-LA/P/0104/2020. The authors also acknowledge support from FCT and the European Social Found, through Programa Operacional Capital Humano (POCH), in the scope of the PhD grant SFRH/BD/ 136670/2018, SFRH/BD/136721/2018, and SFRH/ BD/131545/2017

    Deep learning-based detection of anthropometric landmarks in 3D infants head models

    Get PDF
    Deformational plagiocephaly (DP) is a cranial deformity characterized by an asymmetrical distortion of an infant's skull. The diagnosis and evaluation of DP are performed using cranial asymmetry indexes obtained from cranial measurements, which can be estimated using anthropometric landmarks of the infant's head. However, manual labeling of these landmarks is a time-consuming and tedious task, being also prone to observer variability. In this paper, a novel framework to automatically detect anthropometric landmarks of 3D infant's head models is described. The proposed method is divided into two stages: (i) unfolding of the 3D head model surface; and (ii) landmarks' detection through a deep learning strategy. In the first stage, an unfolding strategy is used to transform the 3D mesh of the head model to a flattened 2D version of it. From the flattened mesh, three 2D informational maps are generated using specific head characteristics. In the second stage, a deep learning strategy is used to detect the anthropometric landmarks in a 3-channel image constructed using the combination of informational maps. The proposed framework was validated in fifteen 3D synthetic models of infant's head, being achieved, in average for all landmarks, a mean distance error of 3.5 mm between the automatic detection and a manually constructed ground-truth. Moreover, the estimated cranial measurements were comparable to the ones obtained manually, without statistically significant differences between them for most of the indexes. The obtained results demonstrated the good performance of the proposed method, showing the potential of this framework in clinical practice.The present submission corresponds to original research work of the authors and has never been submitted elsewhere. Moreover, this work was funded by the project NORTE-01-0145-FEDER-024300, supported by Northern Portugal Regional Operational Programme (Norte2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER). Moreover, this work has been also supported by FCT - Fundação para a Ciência e Tecnologia within the Project Scope: UID/CEC/00319/2019. Furthermore, the authors acknowledge FCT, Portugal, and the European Social Found, European Union, for funding support through the "Programa Operacional Capital Humano" (POCH) in the scope of the PhD grants SFRH/BD/136670/2018 (Helena R. Torres), SFRH/BD/136721/2018 (Bruno Oliveira), and SFRH/BD/131545/2017 (Fernando Veloso)

    Non-Hodgkin Lymphoma in Children and Adolescents: Progress Through Effective Collaboration, Current Knowledge, and Challenges Ahead

    Get PDF
    Non-Hodgkin lymphoma is the fourth most common malignancy in children, has an even higher incidence in adolescents, and is primarily represented by only a few histologic subtypes. Dramatic progress has been achieved, with survival rates exceeding 80%, in large part because of a better understanding of the biology of the different subtypes and national and international collaborations. Most patients with Burkitt lymphoma and diffuse large B-cell lymphoma are cured with short intensive pulse chemotherapy containing cyclophosphamide, cytarabine, and high-dose methotrexate. The benefit of the addition of rituximab has not been established except in the case of primary mediastinal B-cell lymphoma. Lymphoblastic lymphoma is treated with intensive, semi-continuous, longer leukemia-derived protocols. Relapses in B-cell and lymphoblastic lymphomas are rare and infrequently curable, even with intensive approaches. Event-free survival rates of approximately 75% have been achieved in anaplastic large-cell lymphomas with various regimens that generally include a short intensive B-like regimen. Immunity seems to play an important role in prognosis and needs further exploration to determine its therapeutic application. ALK inhibitor therapeutic approaches are currently under investigation. For all pediatric lymphomas, the intensity of induction/consolidation therapy correlates with acute toxicities, but because of low cumulative doses of anthracyclines and alkylating agents, minimal or no long-term toxicity is expected. Challenges that remain include defining the value of prognostic factors, such as early response on positron emission tomography/computed tomography and minimal disseminated and residual disease, using new biologic technologies to improve risk stratification, and developing innovative therapies, both in the first-line setting and for relapse
    • …
    corecore