165 research outputs found
Recommended from our members
DESTRUCTION OF TETRAPHENYLBORATE IN TANK 48H USING WET AIR OXIDATION BATCH BENCH SCALE AUTOCLAVE TESTING WITH ACTUAL RADIOACTIVE TANK 48H WASTE
Wet Air Oxidation (WAO) is one of the two technologies being considered for the destruction of Tetraphenylborate (TPB) in Tank 48H. Batch bench-scale autoclave testing with radioactive (actual) Tank 48H waste is among the tests required in the WAO Technology Maturation Plan. The goal of the autoclave testing is to validate that the simulant being used for extensive WAO vendor testing adequately represents the Tank 48H waste. The test objective was to demonstrate comparable test results when running simulated waste and real waste under similar test conditions. Specifically: (1) Confirm the TPB destruction efficiency and rate (same reaction times) obtained from comparable simulant tests, (2) Determine the destruction efficiency of other organics including biphenyl, (3) Identify and quantify the reaction byproducts, and (4) Determine off-gas composition. Batch bench-scale stirred autoclave tests were conducted with simulated and actual Tank 48H wastes at SRNL. Experimental conditions were chosen based on continuous-flow pilot-scale simulant testing performed at Siemens Water Technologies Corporation (SWT) in Rothschild, Wisconsin. The following items were demonstrated as a result of this testing. (1) Tetraphenylborate was destroyed to below detection limits during the 1-hour reaction time at 280 C. Destruction efficiency of TPB was > 99.997%. (2) Other organics (TPB associated compounds), except biphenyl, were destroyed to below their respective detection limits. Biphenyl was partially destroyed in the process, mainly due to its propensity to reside in the vapor phase during the WAO reaction. Biphenyl is expected to be removed in the gas phase during the actual process, which is a continuous-flow system. (3) Reaction byproducts, remnants of MST, and the PUREX sludge, were characterized in this work. Radioactive species, such as Pu, Sr-90 and Cs-137 were quantified in the filtrate and slurry samples. Notably, Cs-137, boron and potassium were shown as soluble as a result of the WAO reaction. (4) Off-gas composition was measured in the resulting gas phase from the reaction. Benzene and hydrogen were formed during the reaction, but they were reasonably low in the off-gas at 0.096 and 0.0063 vol% respectively. Considering the consistency in replicating similar test results with simulated waste and Tank 48H waste under similar test conditions, the results confirm the validity of the simulant for other WAO test conditions
Clinical utility of the risperidone formulations in the management of schizophrenia
Risperidone is one of the early second-generation antipsychotics that came into the limelight in the early 1990s. Both the oral and long-acting injectable formulations have been subject to numerous studies to assess their safety, efficacy, and tolerability. Risperidone is currently one of the most widely prescribed antipsychotic medications, used for both acute and long-term maintenance in schizophrenia. Risperidone has better efficacy in the treatment of psychotic symptoms than placebo and possibly many first-generation antipsychotics. Risperidone fares better than placebo and first-generation antipsychotics in the treatment of negative symptoms. Risperidone’s long acting injectable preparation has been well tolerated and is often useful in patients with medication nonadherence. Risperidone has a higher risk of hyperprolactinemia comparable to first-generation antipsychotics (FGAs) but fares better than many second-generation antipsychotics with regards to metabolic side effects. In this article, we briefly review the recent literature exploring the role of risperidone formulations in schizophrenia, discuss clinical usage, and highlight the controversies and challenges associated with its use
Recommended from our members
INEXPENSIVE, OFF THE SHELF HYBRID MICROWAVE SYSTEM
A hybrid-heating microwave oven provides the energy to heat small 10-gram samples of spent metal tritide storage bed material to release tenaciously held decay product {sup 3}He. Complete mass balance procedures require direct measurement of added or produced gases on a tritide bed, and over 1100 C is necessary to release deep trapped {sup 3}He. The decomposition of non-radioactive CaCO{sub 3} and the quantitative measurement of CO{sub 2} within 3% of stoichiometry demonstrate the capabilities of the apparatus to capture generated (released) gases
Late-Time Spectroscopy of SN 2002cx: The Prototype of a New Subclass of Type Ia Supernovae
We present Keck optical spectra of SN 2002cx, the most peculiar known Type Ia
supernova (SN Ia), taken 227 and 277 days past maximum light. Astonishingly,
the spectra are not dominated by the forbidden emission lines of iron that are
a hallmark of thermonuclear supernovae in the nebular phase. Instead, we
identify numerous P-Cygni profiles of Fe II at very low expansion velocities of
about 700 km/s, which are without precedent in SNe Ia. We also report the
tentative identification of low-velocity O I in these spectra, suggesting the
presence of unburned material near the center of the exploding white dwarf. SN
2002cx is the prototype of a new subclass of SNe Ia, with spectral
characteristics that may be consistent with recent pure deflagration models of
Chandrasekhar-mass thermonuclear supernovae. These are distinct from the
majority of SNe Ia, for which an alternative explosion mechanism, such as a
delayed detonation, may be required.Comment: 18 pages, 5 figures, to appear in The Astronomical Journal; minor
revisions to match accepted versio
On the Progenitor and Supernova of the SN 2002cx-like Supernova 2008ge
We present observations of supernova (SN) 2008ge, which is spectroscopically
similar to the peculiar SN 2002cx, and its pre-explosion site that indicate
that its progenitor was probably a white dwarf. NGC 1527, the host galaxy of SN
2008ge, is an S0 galaxy with no evidence of star formation or massive stars.
Astrometrically matching late-time imaging of SN 2008ge to pre-explosion HST
imaging, we constrain the luminosity of the progenitor star. Since SN 2008ge
has no indication of hydrogen or helium in its spectrum, its progenitor must
have lost its outer layers before exploding, requiring that it be a white
dwarf, a Wolf-Rayet star, or a lower-mass star in a binary system. Observations
of the host galaxy show no signs of individual massive stars, star clusters, or
H II regions at the SN position or anywhere else, making a Wolf-Rayet
progenitor unlikely. Late-time spectroscopy of SN 2008ge show strong [Fe II]
lines with large velocity widths compared to other members of this class at
similar epochs. These previously unseen features indicate that a significant
amount of the SN ejecta is Fe (presumably the result of radioactive decay of
56Ni generated in the SN), further supporting a thermonuclear explosion.
Placing the observations of SN 2008ge in the context of observations of other
objects in the class of SN, we suggest that the progenitor was most likely a
white dwarf.Comment: 9 pages, 6 figures, accepted by A
Elastic Properties of 4–6 nm-thick Glassy Carbon Thin Films
Glassy carbon is a disordered, nanoporous form of carbon with superior thermal and chemical stability in extreme environments. Freestanding glassy carbon specimens with 4–6 nm thickness and 0.5 nm average pore size were synthesized and fabricated from polyfurfuryl alcohol precursors. Elastic properties of the specimens were measured in situ inside a scanning electron microscope using a custom-built micro-electro-mechanical system. The Young’s modulus, fracture stress and strain values were measured to be about 62 GPa, 870 MPa and 1.3%, respectively; showing strong size effects compared to a modulus value of 30 GPa at the bulk scale. This size effect is explained on the basis of the increased significance of surface elastic properties at the nanometer length-scale
Recommended from our members
Composition and Flow Behavior of F-Canyon Tank 804 Sludge following Manganese Addition and pH Adjustment
The Site Deactivation and Decommissioning (SDD) Organization is evaluating options to disposition the 800 underground tanks (including removal of the sludge heels from these tanks). To support this effort, SDD requested assistance from Savannah River National Laboratory (SRNL) personnel to examine the composition and flow characteristics of the Tank 804 sludge slurry after diluting it 10:1 with water, adding manganese nitrate to produce a slurry containing 5.5 wt % manganese (40:1 ratio of Mn:Pu), and adding sufficient 8 M caustic to raise the pH to 7, 10, and 14. Researchers prepared slurries containing one part Tank 804 sludge and 10 parts water. The water contained 5.5 wt % manganese (which SDD will add to poison the plutonium in Tank 804) and was pH adjusted to 3, 7, 10, or 14. They hand mixed (i.e., shook) these slurries and allowed them to sit overnight. With the pH 3, 7, and 10 slurries, much of the sludge remained stuck to the container wall. With the pH 14 slurry, most of the sludge appeared to be suspended in the slurry. They collected samples from the top and bottom of each container, which were analyzed for plutonium, manganese, and organic constituents. Following sampling, they placed the remaining material into a viscometer and measured the relationship between applied shear stress and shear rate. The pH 14 slurry was placed in a spiral ''race track'' apparatus and allowed to gravity drain
Recommended from our members
BENCH-SCALE STEAM REFORMING OF ACTUAL TANK 48H WASTE
Fluidized Bed Steam Reforming (FBSR) has been demonstrated to be a viable technology to remove >99% of the organics from Tank 48H simulant, to remove >99% of the nitrate/nitrite from Tank 48H simulant, and to form a solid product that is primarily carbonate based. The technology was demonstrated in October of 2006 in the Engineering Scale Test Demonstration Fluidized Bed Steam Reformer1 (ESTD FBSR) at the Hazen Research Inc. (HRI) facility in Golden, CO. The purpose of the Bench-scale Steam Reformer (BSR) testing was to demonstrate that the same reactions occur and the same product is formed when steam reforming actual radioactive Tank 48H waste. The approach used in the current study was to test the BSR with the same Tank 48H simulant and same Erwin coal as was used at the ESTD FBSR under the same operating conditions. This comparison would allow verification that the same chemical reactions occur in both the BSR and ESTD FBSR. Then, actual radioactive Tank 48H material would be steam reformed in the BSR to verify that the actual tank 48H sample reacts the same way chemically as the simulant Tank 48H material. The conclusions from the BSR study and comparison to the ESTD FBSR are the following: (1) A Bench-scale Steam Reforming (BSR) unit was successfully designed and built that: (a) Emulated the chemistry of the ESTD FBSR Denitration Mineralization Reformer (DMR) and Carbon Reduction Reformer (CRR) known collectively as the dual reformer flowsheet. (b) Measured and controlled the off-gas stream. (c) Processed real (radioactive) Tank 48H waste. (d) Met the standards and specifications for radiological testing in the Savannah River National Laboratory (SRNL) Shielded Cells Facility (SCF). (2) Three runs with radioactive Tank 48H material were performed. (3) The Tetraphenylborate (TPB) was destroyed to > 99% for all radioactive Bench-scale tests. (4) The feed nitrate/nitrite was destroyed to >99% for all radioactive BSR tests the same as the ESTD FBSR. (5) The radioactive Tank 48H DMR product was primarily made up of soluble carbonates. The three most abundant species were thermonatrite, [Na{sub 2}CO{sub 3} {center_dot} H{sub 2}O], sodium carbonate, [Na{sub 2}CO{sub 3}], and trona, [Na{sub 3}H(CO{sub 3}){sub 2} {center_dot} 2H{sub 2}O] the same as the ESTD FBSR. (6) Insoluble solids analyzed by X-Ray Diffraction (XRD) did not detect insoluble carbonate species. However, they still may be present at levels below 2 wt%, the sensitivity of the XRD methodology. Insoluble solids XRD characterization indicated that various Fe/Ni/Cr/Mn phases are present. These crystalline phases are associated with the insoluble sludge components of Tank 48H slurry and impurities in the Erwin coal ash. The percent insoluble solids, which mainly consist of un-burnt coal and coal ash, in the products were 4 to 11 wt% for the radioactive runs. (7) The Fe{sup +2}/Fe{sub total} REDOX measurements ranged from 0.58 to 1 for the three radioactive Bench-scale tests. REDOX measurements > 0.5 showed a reducing atmosphere was maintained in the DMR indicating that pyrolysis was occurring. (8) Greater than 90% of the radioactivity was captured in the product for all three runs. (9) The collective results from the FBSR simulant tests and the BSR simulant tests indicate that the same chemistry occurs in the two reactors. (10) The collective results from the BSR simulant runs and the BSR radioactive waste runs indicates that the same chemistry occurs in the simulant as in the real waste. The FBSR technology has been proven to destroy the organics and nitrates in the Tank 48H waste and form the anticipated solid carbonate phases as expected
Recommended from our members
SIMULANT DEVELOPMENT FOR SAVANNAH RIVER SITE HIGH LEVEL WASTE
The Defense Waste Processing Facility (DWPF) at the Savannah River Site vitrifies High Level Waste (HLW) for repository internment. The process consists of three major steps: waste pretreatment, vitrification, and canister decontamination/sealing. The HLW consists of insoluble metal hydroxides (primarily iron, aluminum, magnesium, manganese, and uranium) and soluble sodium salts (carbonate, hydroxide, nitrite, nitrate, and sulfate). The HLW is processed in large batches through DWPF; DWPF has recently completed processing Sludge Batch 3 (SB3) and is currently processing Sludge Batch 4 (SB4). The composition of metal species in SB4 is shown in Table 1 as a function of the ratio of a metal to iron. Simulants remove radioactive species and renormalize the remaining species. Supernate composition is shown in Table 2
Comparisons of the radial distributions of core-collapse supernovae with those of young and old stellar populations
We present observational constraints on the nature of core-collapse
supernovae through an investigation into their radial distributions with
respect to those of young and old stellar populations within their host
galaxies, as traced by H-alpha emission and R-band light respectively. We
discuss results and the implications they have on the nature of supernova
progenitors, for a sample of 177 core-collapse supernovae. We find that the
radial positions of the overall core-collapse population closely follow the
radial distribution of H-alpha emission, implying that both are excellent
tracers of star formation within galaxies. Within this overall distribution we
find that there is a central deficit of SNII which is offset by a central
excess of SNIb/c. This implies a strong metallicity dependence on the relative
production of the two types, with SNIb/c arising from higher metallicity
progenitors than SNII. Separating the SNIb/c into individual classes we find
that a trend emerges in terms of progenitor metallicity going from SNII through
SNIb to SNIc, with the latter arising from the highest metallicity progenitors.Comment: Accepted for publication in MNRA
- …