25,402 research outputs found

    Guest Editorial: The Pastoral Care of the Physician

    Get PDF

    A deflection formula for single-span beams of constant section subjected to combined axial and transverse loads

    Get PDF
    In this paper there is presented a deflection formula for single-span beams of constant section subjected to combined axial and transverse loads of the types commonly encountered in airplane design. The form of the equation is obtainable by dimensional analysis. Tables and curves of the non dimensional coefficients are appended to facilitate the use of the formula. The equation is applied to the determination of the spring constant of a beam. Tables and curves are presented to show the variation of the spring constant with changes in the axial load and position along the beam

    Astronomical interferometry on the Moon

    Get PDF
    Optical interferometric arrays are particularly attractive candidates for a manned lunar base. A permanent lunar can provide support for a variety of astronomical investigations. An optical interferometric array, perhaps of the general form of the VLA but designed for optical instead of radio wavelengths, would lead to a qualitative advance in the understanding of the universe. A wide variety of scientific problems could be addressed by such an instrument. The stellar analogs of the solar cycle, the behavior of sunspots on other stars, the magnetic field configurations of other stars, and the behavior of dynamic plasma phenomena such as flares and winds are examples of star related problems that ultimately would lead to both increased understanding of our Sun and fundamental knowledge of the manner in which stars form and evolve

    An optical VLA on the Moon

    Get PDF
    Optical observations on the Earth must cope with the refractive disturbances of the atmosphere, perturbations by the day-to-night thermal cycle, vibrations induced by the wind, and the bending of the telescope by gravity. These all conspire to limit telescope performance. In particular, in trying to improve angular resolution, there seems to be a practical limit of the order of a few tenths of an arc-second for the realizable angular resolution of single-aperture telescopes, largely imposed by the atmosphere, although other structural limitations would appear as limits at one-tenth of an arc-second or so

    Appendix: Limits on the use of heterodyning and amplification in optical interferometry

    Get PDF
    The development of optical fibers, lasers, and mixers at optical frequencies has offered the hope that active methods can contribute to optical interferometry. Heterodyning, in particular, looks attractive, even though bandwidths are narrower than one would like at present; one might expect this limitation to lessen as technology develops. That expectation, unfortunately, is not likely to benefit interferometry at optical wavelengths because of the intervention of quantum mechanics and the second law of thermodynamics, as Burke (1985a) pointed out. So much 'second quantization' noise is generated that only at infrared frequencies, somewhere in the 10-100 micron range, can one look forward to heterodyning in any realistic sense. The reason is easily understood. Every amplifier, in the quantum limit, works by stimulated emission, even though this basic truth is not obvious at radio frequencies. This means that there must be spontaneous emission occurring within every amplifier, and Strandberg (1957) showed that this implied a limiting noise temperature, T sub N = h nu/k, for any amplifier. Burke (1969) used this result to demonstrate that, if it were not for this quantum noise, the VLBI method would allow one to tell which slit a photon went through before forming an interference pattern, thus violating basic tenants of quantum mechanics. In essence, the second quantization condition Delta N Delta phi greater than or = 1 saves one from paradox. One can state the conclusion simply: any amplifier produces approximately one photon per Hertz of bandwidth. In optical interferometry, one will certainly want bandwidth in the 10(exp 12) to 10(exp 14) Hz range, and that implies an intolerable cacophony of noise photons. Only at infrared frequencies can one tolerate the quantum noise, where the natural noise background may be high and the mixers are not as efficient as one would hope for. The crossover at present is about 10 or 20 microns, but the boundary will shift to longer wavelengths as noise performance improves. One might guess that ultimately a wavelength of about 100 microns will mark the limit of useful amplification and heterodyning in astronomical aperture synthesis interferometry

    Endurance test and evaluation of alkaline water electrolysis cells

    Get PDF
    Utilization in the development of multi-kW low orbit power systems is discussed. The following technological developments of alkaline water electrolysis cells for space power application were demonstrated: (1) four 92.9 cm2 single water electrolysis cells, two using LST's advanced anodes and two using LST's super anodes; (2) four single cell endurance test stands for life testing of alkaline water electrolyte cells; (3) the solid performance of the advanced electrode and 355 K; (4) the breakthrough performance of the super electrode; (5) the four single cells for over 5,000 hours each significant cell deterioration or cell failure. It is concluded that the static feed water electrolysis concept is reliable and due to the inherent simplicity of the passive water feed mechanism coupled with the use of alkaline electrolyte has greater potential for regenerative fuel cell system applications than alternative electrolyzers. A rise in cell voltage occur after 2,000-3,000 hours which was attributed to deflection of the polysulfone end plates due to creepage of the thermoplastic. More end plate support was added, and the performance of the cells was restored to the initial performance level

    Strength Tests of Thin-walled Duralumin Cylinders of Elliptic Section

    Get PDF
    This report is the fifth of a series presenting the results of strength tests of thin-walled cylinders and truncated cones of circular and elliptic section; it includes the results obtained from torsion tests on 30 cylinders, pure bending tests on 30 cylinders, and combined transverse shear and bending tests on 60 cylinders. All the cylinders tested were elliptic section with the ends clamped to rigid bulkheads. In the pure bending and combined transverse shear and bending tests the loads were applied in the plane of the major axis. The results of the tests on elliptic cylinders are correlated with the results of corresponding tests on circular cylinders and are presented in charts suitable for use in design
    corecore