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SUMMARY

Space electrical power systems delivering high power levels at low cost will

be reeded in the future to support Shuttle-based habitation and the use of
near-Earth space. The development of space utility power plant technology
requires means to store energy. One storage technology is the Regenerative

Fuel Cell System which consists of a fuel cell subsystem and a water electrolyzer.
The Regenerative Fuel Cell System is a strong candidate for energy storage in
space on the basis of projected launch weight, efficiency, system volume,
adaptability te cyclic operation and the existence of a strong technology base

on which to build.

The fuel cell portion of the Regenerative Fuel Cell System has been the primary
electrical power source for all United States manned space prograns except
Mercury and has established itself as a proven reliable power source. As an
initial step toward evalusting alkaline watex electrolysis for the electrolyzer
portion of the Regenerative Fuel Cell System, four single alkaiine water
electrolyzers were built and endurance tested for a total of 23,450 hours
(5,862 hours/cell). Emphasis was placed on evaluating operational readiness

of the concept atd the maturity of the cell hardware by demonstrating the
reliability and state-of-the-art power consumption levels of Life Systems'
alkaline water electrolyzers.

Life Systems alkaline water electrolyzers use the static feed water electrolysis
cell. The static feed of water to the alkaline electrolyzer was chosen as the
best electrolyzer candidate for space power systems because it is very simple
and has the greatest potential for low cost, weight, and volume as well as

high reliability because it minimizes the electrolyzer components. The static
feed concept is entirely passive, requiring no moving parts, and is self-
regulating.

Each of the four singleﬂwatﬁr electrolysis cells were designed to operate at

355 K (180 F) and 162 mA/cm® (150 ASF) with voltages of less than 1.5 V for

cells with super anodes and voltages of less than 1.70 V for cells with "advanced"
anodes. Four individual test stands used to test the cells were designed and
fabricated to ensure accurate dats and reliable fail-safe operation.

The endurance test program was completed and all four cells were successfully
tested. All performance and testing goals were met or surpassed. A total of
23,450 cell-hours of endurance testing was logged for the four cells {un
average of 5,862 hours/cell). .

It is concluded from the results reported herein that the static feed water
electrolysis concept is reliable and due to the inherent simplicity coupled
with the use of alkaline electrolyte has greater potential for Regenerative
Fuel Cell System applications than alternative electrolyzers. The celis
performed as expected. One slight anomaly was observed. A rise in cell
voltage occuryed afte: 2,000-3,000 hours of endurance testing which continued
until the end of endurance testing. This change in performarnce was attributed
to deflection of the pelysulfone end plates due to creepage &f the thermoplastic.
At the end of endurance testing, more end plate support was added, and the
performance of the cells was rﬁstored to the initial average cell voltages of
1.49 V 2nd 1.58 V at 162 mA/cm™ (150 ASF) and 355 K (180 F) for cells using



super and advanced anodes, respectively. Continued evaluation and development
of static feed water electrolysis te~hnology is recommended in the areas of
high pressure operation, cyclic testing and scaled-up cell operation to evaluate
the cell operation and enhance its performance level.

LIST OF PROGRAM ACCOMPLISHMENTS

Under Contract NAS3-21274 the following major accomplishments were achieved in
the technological development of alkaline water electrolysis cells for space
power application.

o Designed and fabricated four single water electrolysis cells, two
using LSI's advanced anodes and two using LSI's super anodes.

o Designed and fabricated four single cell endurance test stands for
life testing of alkaline water electrolyte cells

0 Demonstrated the solid performance of the advanced electrode, LSI's
baseline water electrolysis electrode since 1974. LSI's continuing
advancements in electrode fabrication have been demonstrated by
further improvements in this electrode’'s performance.

o Demonstrated the breakthrcugh performanci of the super electrode.
(Voltages of 1.50 V or less at 162 mA/cm” (150 ASF) and 355 K (180 F)).

o Endurance tested the four single cells for over 5,000 hours each
(combined total of 23,450 cell-hours) without significant cell
deterioration or cell failure.

INTRODUCTION

The work performed under the program is part of a National Aeronautics and
Space Administration (NASA) Lewis Research Center (LeRC) effort being conducted
to advance the technology to a state of readiness so that it could be utilized
in the development of multi-kW low orbit power systems. A basic premise is
that all the power generated by the system will be derived from solar energy
utilizing the latest in solar array technology. This, then, identifies the
need of an energy storage system to supply the load demand during the dark
side of orbit. A '"regenerative" fuel cell electrolyzer system which consiste
of water electrolysis, reactant storage, water storage and a fuel cell subsystem
is a strong candidate for this application on the basis of projected launch
weight, efficiency, system volume, adaptability to cyclic operation and the
existence of a strong technology base on which to build.

Only two types of water electrolysis systems exist which are oriented to 2
spacecraft environment. One utilizes #n alkaline electrolyte, the other an
acid. The current program is directed at the alkaline cell because it offers
inherently lower system cost, less complexity, higher efficiency and higher
reliability.

At present, the alkaliine electrolyzer data base for space power application
mist be expanded to svixdrt the requirements of high reliability c¢aud long
endurance operation which is a primary need for a low earth orbit pcwer system.



This program is aimed at generating this data base and thus provide information
needed to assess the competitiveness of the alkaline electrolyzer technology
and its adaptability to a multi-kW power plant.

Background

Prior development efforts of water electrolysis cells, modutsgajnd subsystems
have included th se that use the static water feed concept. 7 Subsystems
using this concggtsgava demonstrated an inherent simplicity and long operating
life potential. ™! Electrical energy storage, using Static Feed Water Elec-
trolysis [SFWE), has the potential for the loweii gswer-consuming electrolysis
subsystem due to the alkaline electrolyte used.‘’ Various appvoaches to
the static feed design and the resultizgf extensive test programs identified
necessary key subsystem improvements. These improvements were made and

incorporate?7§nto the design of the hardware being developed by Life Systems,
Inc. (LSI}.

In 1977 a siynificant reduction in state-of-the-art cell voltage levels was
achieved with a Life Systems-developed catalyst for the O,-evolving electrode
(anode). This Contractor-developed electrode was endurane tested and a total
of 136 days of single cell operation werezaccumulated on this electrode(Q)The
cell voltage averaged 1.4% V at 162 mA/cm® (150 ASF) and 355 K (150 F).

This endurance testing has been continued under a Life Systems funded program
demonstrating a cell voltage of 1.49 V after 18,000 hours of operation {at the
above conditions). This version of the ancde has been termed "super anode" or
"super electrode" as opposed to Life Systems baseline anode which is referred
to as the "advanced anode" or "advanced electrode."

Program Objectives

The overall objective of this program is to assess the current state of alkaline
water electrolysis technology aid its potential as part of a regenerative fuel
cell system of a multi-kW orbiting power plant. The first phase of this

effort addresses the evaluation of the endurance capabilities of alkaline
elect.'olyte water electrolysis cells. The objective of the Single Water
Electrolysis Cell (SWEC) part of the overall technology program it to demon-
strate the operationa) readiness of the concept and cell hardware by per-
forming endurance and parametric tests at the cell level. This was done by
successfully meeting the following objectives:

a, Fabricate and assemble four of the contractor's alk:line SWECs for
testing.

b. Design and fabricate four SWEC test stands to provide the testing
capability,

¢. Endurance test four alkaline SWECs with a milestone of 5,000 oxr more
hours per cell as a goal,

(1-4) Refrrences cited at end of report.



d. Periodically characterize the cell's performance with voltage versus
current density data.

e. Demonstrate a very simple, low cost approach to electrolytic hydrogen
(H,) and oxvgen (02) production with a static feed water electrolysis
apgroach which

o has a lower capital cost potential than other designs

o has a high reliabilty, longer life potential than other designs
at the same ep=rgy consumption levels

o has both advziced and super electrodes characterized by cell
voltages in the range of 1.7 and 1.5 V, respectively.

Program Oyganization

To meet the above objectives, the program was divided into the following six
t.asks. These six tasks were:

1.0 Design, fabricate and assemble four SWECs. Two cells with "advanced"
electrodes and two cells with "super" electrodes for endurance
testing, to demonstrate the operational readiness of the static feed
concept and cell hardware for regenerative fuel cell systems.

2.0 Design, fabricate, assemble and checkout four Test Stands required
to control and monitor the SWECs.

3.0 Provide a minimum level Product Assurance support with respect to
receipt and inspection of all purchased parts, test stand instrumen-
tation calibration and those safety aspects necessary for protection
of persopnel and equipment.

4.0 Perform testing of the SWECs to verify acceptable operation. The
testing task will consist of checkout, shakedown, design verification
tests and an endurance test of 5,000 hours minimum per cell, as a
goal.

5.0 Incorporate the Contractor's data management functions to providé
internal procedures for control of the collection, prepsration,
quality, assessment, distribution and maintenapze of data.

6.0 Incorporate the management needed to successfully meet the program's
Coust, Schedule and Technical Performance requirements and qocrdinate
with the LeRC Technical Monitor and Contract Administrator through
periodic telephone discussions.

PROCESS AND HARDWARE DESCRIPTION
Four SWECs were built and tested. The SWEC and SWEC Test Stand design require-

ments are listed in Table 1 while Table 2 lists the design specifications and
ranges of the SWEC.



TABLE 1 SWEC DESIGN REQUIREMENTS

Independent Testing Operation of Each SWEC
Alkaline Electrolyte Held in a Porous Matrix
Static-Feed Water Addition

Fail-Safe and Automatic Operation

Ease of Maintenance Using Replaceable Componants
Cell Design Life of >5 Years

Test Stand Design Life of 5 Years

Shelf Lite Unlimited



TABLE 2 SWEC DESIGN SPECIFICATION
HZ Generation Rate, sccm 56 to 224(3)
02 Generation Rate, sccm 28 to 112
Operat.ing Pressure Range, kPa (psia) 101 to 315 (14.7 to 16.7)
Operating Temperature Range, K (F) 294 to 366 (70 to 200)

Pressure Differentials, kPa {(psid)

02 to H2 (max.) 13.8 (2.0)

H, to Hy0 (max.) 13.8 (2.0)
Ferformance (t0.00S)(b), v Super Advanced
At 108 mA/cm2 (100 ASF) 1.44 1.54
At 162 mA/cmy (150 ASF) 1.48 1.58
At 324 mA/cm” (300 ASF) 1.56 1.70

Water Supply
Pressure Ambient

Temperature, K (F)
Coolant

Fluid

Pressure, kPa (psia)

Temperature, K (F)
Water Feed Mechanism
Active Cell Area, m2 (ftz)

Electrical Power, V

DC
AC

Packaging

Duvty Cycle

277 to 300 (40 to 80)

Water
<207 (30)
<358 (185)
Static

0.0093 (0.1)

0 to 10
115 (60 Hz, 1 Phase)

Single Cell w/Test Stand

Continuous

(a) Off- and out-of-design specification will be included to allow initial

characterization of next level technology.
(b) Initial performance at 358 K (185 F).
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Static Feed Water Electrolysis Concept

The static water feed, alkaline electrolyzer 1s an attractive candidate for
space power systems due to its inherent simplicity and potential for low cost
and reliability. The static feed approach minimizes Water Electiclysis System
(WES) components, is entirely passive, requires no moving parts and is self-
regulating based upon the demands of the electrolyzer.

Figure 1 is a conceptual schematic of a cell designed for the Static Feed
Water Electrolysis (SFWE) Module (SFWEM) concept. The overall static water
feed concept operates as follows. Initially, the water feed cavity, the water
feed matrix and the cell matrix contain an aqueous solution of potassium
hydroxide (KOH) electrolyte at equal concentrations. Both the H, and O
cavities are void of liquid. An equilibrium condition exists prior to start
of electrolysis. When power is applied to the electrodes, water from the cell
electrolyte is electrolyzed. As a result, the concentration of the cell
electrolyte increases and, therefore, its water vapor pressure decreases to a
level below that of the feed compartment electrolyte. This water vapor pressure
differential is a driving force causing water vapor to diffuse from the liquid
gas interface within the water feed matrix, through the H, cavity and cathode
electrode into the cell electrolyte. This process #stablislies a steady-state
condition based on the water requirements for electrolysis (current density)
and humidification of the product gases and continrues as long as electrical
power is applied to the cell electrodes.

As water diffuses from the feed matrix and is removed from the water feed
compartment, it is statically replenished from an external source to maintain

a constant. pressure, volume and elzctrolyte concentration within the feed
compartment. Upon interruption of electrical power, water vapor will continue
to diffuse across the H, compartment until the electrolyte concentration in

the cell matrix is equa% to that of the water feed matrix and compartment. At
this point, the original equilibrium condition is regained with the electrolyte
retained in the cell matrix and electrodes and equal to the initial charge
volume and concentration.

Figure 2 illustrates a conceptual schematic of an alkaline electrolyzer based
on the SFWE concept. The subsystem consists of only three main parts: an
electrochemical module, a water feed tank a2nd a pressure controller.

SWEC Mechanical Design

A functional schematic of the SWEC cell showing the four compartment cell is
illustrated in Figure 3. The four compartments are (1) the 0, cavity, (2) the
H, cavity, (3) the water feed cavity, and (4) the liquid coolant cavity.
Intercavity sealing is achieved by O-rings and by squeezing the cell and water
feed matrices between the polysulfone frame components, forming the Gz, H, and
water feed cavities. The coolant cavity is formed by the rell frame and %he
cell end plate. Figure 4 illustrates the SWEC in cross-section. Electrical
current passes from the anode current collector, through the cell, into the
cathode current collector and into the current studs by means of current
ccllector connection screws.
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Figure 5 displays the components of a single cell ané the fully assembled

SWEC. These components plus the SWEC end plates and compression bolts comprise
the SWEC. Table 3 lists the cell components and their materials of construction.
The materials were selected based upon their compatibility with long-term
alkaline electrolyzer operation and low cost, both requirements of alkaline
electrolyzer-based, regenerative fuel cell power systems. Figure 6 displavs

the four fully assembiea SWECs prior to installation on the test stands.

SWEC Test Stard Design

Figures 7, 8, 9 and 10 show the mechanical schematic, front panel of the SWEC
Test Stand. a single test stand assembly and all four test stands, vespectively.
A test stand assembly drawing is given in Appendix 1. Pasically, the test
stand has two liquid circulation loops; one loop for the liquid coolant that
maintains the cell operating temperature, and a second loop for delivering

feed water from the water feed tank to the cell. The latter is only used for
single cell testing and is not required at the system level.

A significant amount of water vapor is removed with the product gases when
operating at boté ambient pressure and high temperature. To remove water that
lkas condensed in the product gas lines, the product gases of the cell are fed
through condensate traps (TR1 and TR2) and then through water backpressure
reguiators (PR1 and PR2) (see Figure 7 for component identification/location).

The liquid coolant used on the SWEC test stand is water. The coolant is
circulated by M2 through the SWEC. Manual valves and a flowmeter are included
to control the coolant flow. A water tank is used to allow for coolant expan-
sion and coolant temperature control.

Due to the low pressure operation of the cell, feed water is not added to the
SWEC directly, but rather statically fed to an external feed water circulation
loop. This allows for separation of dissolved gases which are carried into
the cell by the feed water and which come out of solution at the highcr tempera-
ture and KOH salt. At end item application pressures these gases do not come
out of solution. The Ml circulates the feed water through the SWEC. A manual
valve and flowmeter are included to control the feed water flow. Feed water
is statically fed to the water accumulator WAl, from the water feed tank WI1,
as feed water is consumed in the electrolysis process. The negative pressure
this creates in the feed water loop maintains the gas/liquid separation within
the SWEC.

Table 4 lists the baseline operating conditions of the test stand during the
endurance testing.

Electrical Design

The SWEC test stands were designed for simple, fail-safe cperation. Figure 11
illustrates the operating modes and allowable mode transitions. Table 5
defines each of these operating modes and the conditions under which each mode
is called. Appendices 2 and 3 further define the steady-state actuator con-
ditions and the intermode transition sequences for the test stand.

12
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TABLE 3 SWEC PARTS LIST

Description/Title/Name Material
End Plate, Upper 2 Polysulfone
End Plate, Lower Polysulfone
Lower Support Screzn Polypropylene
Upper Support Screen with Tape Polypropylene/Teflon
Compression Frame (a) Polysulfone
Cell Housing Assembly (b) Polysulfone
Current Collector, Anode Assembly (c) Nickel 200
Current Collector, Cathode Assembly Nickel 200
Current Insulator Polysulfone
Oxygen Cavity Spacers Nickel 200
Hydrogen Cavity Sapcers Nickel 200
Current Stud Assembly (or remain. pcs.) Polysulfone
Electrode, Anode Porous Media
Electrode, Cathode Porvus Media
Matrix, Cell . Asbestos
Matrix, Water Feed Asbestos
O-Rings, Assorted Ethylene Prop.
Bolts, Nuts and Washers 316 Stainless Steel
Current Leads Copper
O-Rings Fittings 316 Stainless Steel , .
Electrolyte KOH (25% by weight) (&7

(a) Includes inserts, distribution cover and lower support screen.
(b) Includes gold plated oxygen spacer.

(c) Includes four current studs with screws (gold plated).

(d) Initial concentration.

14



sapouy 1adng

3TN STT?)

SOAMS

dITIWISSY ¥N0d

9 FANO14

15



SFWE

CELL

s
: vENT
n . vy N
,—-——-———.—é—‘--‘—i
MYSE ‘
¥ @1 l N/ Ty
) i L
l r i’f vy
L] ' l ] ! é—
vk, | _J M
4‘ o ; ”9
]
£
ANSENT  — ' j- '
£
Ak REE ! wA1 | !
I ]
[} | ¥
\ Wi d g
Hp0 Tmys 1 +
SEEQ 1 ”','*
| ZAwk * ' L
40 wl@oF - 1 S
LRV XS ] .
R MV
mv/3
K20 =
e I
(MEASURED) K14 fORRWS
SAnAL

NOTE: e
T— 1) AL UNES W 00 SIAMKESS(3/6)
UNLESS NoTEQ

AUl ORIV
Samma e

Ha YENT

o CONOENSATE

Iremae e e————din

i

R) 7EST STAND 1085 LIWU/ZES SWEC AASESEMBLY T2559;
TEST STANDS 106 £ /08 CAN UZILIZE SWEC AENAlY
T-RRRI OR OIMER SWEC QONF/GURARIION,

W

FIGURE 7 MECHA;

PN

16

AL SCHEMATIC OF SWEC TEST STAND

ORAIN OUT

> Oa VENT

CoNDENSATE
DRAN ovr



TANVa INO¥A GNVLIS 1S3l 0dMS 8 FANO1d

.
.
.
»
AW
o

R N

- -
o~
-

[-VM 03e[nundOy
2338M PR3

1S31 30NVHNAN3

(D3IMS) 1130 SISAI0HLIT T3 HALVM FTONIS

17



ORIGINAL PAGE IS
OF POOR QUN-ITY

SINGLE WATER ELECTROLYSIS CELL (SWEC)
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TABLE 4 SWEC TEST STAND BASELINE OPERATING CONDITIONS

Product Gaseg

Oxygen
Flow, cmalnin(a)
Temperature, K (F)
Pressure, kPa (in HZO)

Hydrogen
Flow, cm /min(a)
Temperature, K (F)
Pressure, kPa (in HZO)

Test Stand Fluids

KOH (25%)
Flow, cm™/min
Temperature, K (F)
Pressure, kPa (psia)

Coolant
Flow, cm™/min
Temperature, K (F)
Pressure, kPa (psia)

Current, A

56.7
294 (70)
7.5 (30)

113.4
294 (70)
3.8 (15)

35 |
355 (180)
94.5 to 97.9 (13.7 to 14.2)

500
355 (180)
101 to 205 (14.7 to 29.7)

15

(a) Flow is the dry volumetric rate at 294 K (70 F) and 101 kPa (14.7 psia).

20
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selected on to automatically restart test stand in the

event of momentary power loss.

FIGURE 11

Standby
(E)

3 Operating Modes
¢ 10 Mode.Transitions

SWEC/TS OPERATING MODES AND ALLOWABLE MODE TRANSITIONS
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TABLE 5 OPERATING MODES AND UNPOWERED MODE DEFINITIONS

Mode (Code)

Shutdown (B)

Normal (A)

Standby (E)

Unpowered (D)

Definition

The SWEC is not generating gases. Cell current is zero
and all valves are deeuergized. The Test Stand is powered
and all sensors are working. The Shutdowa Mode is called
for by:

Maunal actuation

High or low SWET coolant temperature
fligh or low SWEC feed water temperature
Low cell voltage

High 02 outlet temperature

Power 6n reset from Unpowered Mode (D)

The SWEC is performing its function of generating gases at
the design rate. The Normal Mode is called for by:

° Manual actuation
The SWEC is ready to generate gases. The system is powered
at operating pressure and maximum temperature possible (but
less than setpoint) and the module current is off. The
Standby Mode is called for by:

° Manual actuation

No electrical power is applied to the Test Stand. The
Unpowered Mode is called for by:

. Manual actuation (circuit breaker in TS)
® Electrical power failure
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Figure 12 shows a functional block diagram of the SWEC test stand electrical
instrumentcation. Control of the SWEC and feed water circulation temperatures
is done with two Temperature Control and Monitors (TeCM), and the DC power
supply controls and regulates cell current. A Single Cell Voltage Monitor
(SCVM) and Temperature Monitor (TeM) are used to monitor the SWEC voltage (Ei)
and 0, outlet temperature (T3), respectively. Other SWEC and test stand
tmperatures are monitored using thermocouples and a pyrometer. The operation
of the test stiand itself is accomplished with the Operation Control (0pC).
Appendix 4 furtlier defines the roles of the TeCM, SCVM, TeM and OpC on the
SWEC Test Stand. Appendices 5 and 6 detail the control/monitor setpoints used
in conjunction vith the TeCM, SCVM, TeM and OpC instrumentation.

PRODUCT ASSURANCE. PROGRAM

A mini-Product Assurance Program was established, implemented and maintained
throughout all phases of contractual performance including design, purchasing,
fabrication and testing.

Quality Assurance

Quality Assurance activities were included during the design studies, interface
requirement definitions and during inspection of fabricated and purchased
parts. The objective was to search out quality weaknesses and provide appro-
priate corrective action.

Quality Assurance activities for the program consisted of the following:

1. Establishing and implementing a parts receiving inspzcticn program,
maintaining a record of nonconforming articles and materials and
their dispesition, implementcing control over the special procecsing
required in the fabrication of certain cell parts, quality workman-
ship and controlling configuration to the Life Systems' standard
drawing and change control procedure.

2. Performing the receipt and final inspection of components.

3. Ensuring that workmanship was consistent with the program at the
development level.

4. Evaluating all data acquisitiow equipment to determine its accuracy,
stability and repeatability.

5. Calibrating and maintaining the data acquisition equipment to ensure
its accuracy and reliability.

Reliability
Reliability provisions and studies were included as part of the overall product
assurance activities to ensure equipment reliability and long-life SWEC per-

formance. Reliability program activities consisted of the following:

1. Conducting design reviews for the purpose of critical evaluation of
all aspects of SWEC and SWEC test stand design pertinent to the
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overall objectives of the program. These inc” .ded interdepartmental
design reviews and a formal final design revie w~hich included both
Life Systems and NASA personnel.

2. Establishing and maintaining an integrated failure reporting analysis
and corrective action procedure to support all phases of the program.

Maintainability

A maintainability program was carried out as part of the Product Assurance
program to document needs for unplanned maintenance, corrective action taken,
time interval required to determine problem source, time interval required to
correct failure and the operations necessary to complete the corrective action.
The maintainability program activities consisted of the following:

1.  Analyzing SWEC failures or test stand failures which might impact
program testing.

2. Implementing the failure reporting procedures established as part of
the reliability activities.

Safety

A safety program was initiated to assure adhereiice to safety standards and
procedures essential to protect personnel and equipment. The program consisted
of performing safety analyses for the purpose of identifying and resolving
possible adverse SWEC or SWEC test stand characteristics by reviewing design
and design changes for potential safety hazards. Those potential safety
hazards include electrical overload, electrical shock, inadvertant actuations,
current limiting and other safety devices, fire suppression, toxicity, caution/

warning devices, time constraints, emergency procedures, power source failure,
and other malfunctions.

PROGRAM TESTING

The SWEC testing was designed and carried out as the first phase of an assess-
ment of the current state of alkaline water electrolysis technology and its
capability potential as part of a regenerative fuel cell system of a multi-kW
orbiting power plant. The specific objective of the SWEC testing was to
demonstrate the operational readiness of the concept and cell hardware while
accumulating a data base of parametric and endurance test data upon which to
assess the potential of the alkaline electrolyzer. This was done by:

1. Endurance testing four alkaline water electrolysis cells for over
23,450 hours per cell (an average of 5,862 hours per cell).

2. Characterizing the cell's performance with voltage versus current
density data.

3. Testing both the advanced and super electrodes to assess the low
cell voltages capabilities (1.7 V and 1.5 V, respectively) of these
electrodes.
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Cell Voltage Versus Current Density

The voltage versus current density span characterizes the ceil performance
since the cell voltage dictates the power consumption level of the water
electrolysis cell at any given current. In particular, the performance of the
anode (0, electrode) is characteristi:c since the anode accounts for the most
li;nific%nt overvoltage of th: SWEC. Figures 13 and 14 illustrate the cell
voltage versus current density for the two cells (105A and 105B) constructed
with advanced anodes and the two cells (105C and 105D) constructed with super
anodes, respectively.

Cells 105A and 105B exceeded the perfor-ancezexpected of advanced anodes. The
cell voltages for the two cells at 162 mA/cm (150 ASF) were 1.54 and 160 V.
The cell voltage range ~2xpected was between 1.6 and 1.7 V. This improvement

is representative of the additional efforts incorporated in refining the
manufacturing processes of the advanced clectrodes which have been Life Systems'
baseline electrode since 1974,

Cells 105C and 105D met thi performance expected of the super electrodes. The
cell voltages at 162 mA/cm® (150 ASF) were both 1.49 V. At this voltage the
cells are very close to the theoretical 100% thermal efficiency voltage of
1.48 V where no wasted heat exists which has be be rejected. This represents

a weight savings in heat rejection equipment over higher voltage cells.

The operating point of the cells at the end of the endurance testing is also
shown in Figures 13 and 14. Due to deflections in the polysulfone end plates
additional mechanical strength (using either steel braces or stainless steel
end plates) was necessary at the conclusion of endurance testing to accurately
demonstrate the cell performance at its nominal operating point.

Cell Performance Versus Time
The purpose of the endurance test was to continuously cperate the cells at a
constant set of operating conditions and observe any departures from initial

performance, especially departures in the cell voltage levels.

Cell Voltage Versus Time

Beyond the contractual goal of 5,000 hours per cell of endurance testing an
average of 5,862 hours per cell was completed. The cell voltage is plotted
against time for each of the four cells in Fignres 15 through 18. Cell 105A
completed 7,900 hours of operation. As can be seen from Figure 15, the voltage
remained stable at 1.54 to 1.58 V for the first 4,500 hours. Between 4,500
and 6,800 hours the voltage increased from 1.56 V to 1.66 V. Similar increases
in cell voltage were obsérved in all of the cells. Deflections in the polysul-
fone end plates due to the creep of the thermoplastic under thermal and mechani-
cal loads were swspected of causing loss of good electrical contact within the
cells. External steel braces were attached to cell 105A at about 7,500. The
70 mV drop in cell voltage from 1.66 V to 1.59 V confirmed the end plate
problem. ~

Cell 105B completed 6,010 hours of operation. Similar to 105A, the performance
of the cell remained stable at 1.55 to 1.60 V for the first 5,000 hours.
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Between 5,000 and 5,700 hours the voltage increased from 1.56 V to' 1.62 V.
When steel braces were attached to this cell at 5,700 hours, the cell perfor-
mance improved by 50 mV to 1.57 V.

As scheduled, testing on 105C and 105D was stopped at the 5,000 hour mark. To
verify that the voltage increases of these cells at 2,200-2,300 hours was also
due to polysulfone end plate deflection with time, the super electrodes were
characterized under an Internal Research and Developmenr. (IRAD) program. No
degradation of the cell or electrodes was found. The IRAD tests ussd the cell
hardware of cells 105C and 105D, but replaced the polysulfone end plates with
rigid stainless steel end plates. Under these Sorditions cell 105C stabilized
at a voltage of 1.50/1.51 V at 352 K, 161 mA/cm (175 F, 150 ASF) and 105D
stabilized at a voltage of 1.47 V 355 K, 161 mA/cm“ (180 F, 150 ASF), This
performance is equivalent or better to the performance initially obtained in
the endurance testing program.

These tests combined with the results of continued endurance testing of 105A
and B indicate that the reason for the performance change during the testing
program was excessive deflection of the polysulfone end plates with time at
elevated temperature. This resulted in large increases in contact resistances
within the cell.

Added Test Observations

Equally important to the evaluation of the length of useful alkaline cell life
in a regenerative fuel cell based power energy system is the performance
aspects concerned with cell or module corrosion and current efficiency.

Since the cell was an alkaline electrolyte instead of an acid electrolyte
problems with metal corrosion are fewer and less severe thereby allowing more
freedom in the metal components selection to optimize performance, weight,
strength, volume and cost factors. No corrosion of cell components or external
electrolyte leakage was observed during the 5000 hours of operation.

The current efficiency of the cell is calculated as the fraction of the total
cell current which can be accounted for theoretically by Faradays law. From
regularly measured gas production rates it was determined that the cells
operated consistently at 100% current efficiency.

CONCLUSIONS
The following conclusions are direct results of the program activities.

1. Alkaline water electrolysis cells are capable of long-term operaticn
without significant deterioration in performance (greater than three
percent change in power consumption per year or 0.0053 mv/h increase).

2. The static feed design uﬁed in testing shéws consistent reliable
performance at 162 mA/cm” (150 ASF), 355 K (180 F) and has the

potential of lower capital cost because of its simplicity of design
and lower cost materials.
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3. Both the zdvanced and super electrodes tested are réliable, low
voltage, water electrolysis electrodes.

4. Corrosion or mechanical detericration of the alkaline cell was not
observed after 23,450 total hours of the four cells.

RECOMMENDATIONS

Based on the work completed the following recommendations vere made:

1. Continue the performance evaluation of the existing four single
water electrolysis cells beyond the present 5,000 hour test goal by
opetatingztwo of the cells at increased current density (323 ver:us
161 mA/cm” (300 versus 150 ASF)) and two of the cells at cyclic
conditions representing typical sunlight/shade time cycles of a low
earth orbit. These tests should be done with stainless steel end
plates to avoid end plate deflections observed in the initial 5,000
hours of testing.

2. Evaluate the performance of the static feed, alkaline electrolyte
water electrolysis concept at operating pressures projected for the
electrolyzer of a Regenerative Fuel Cell power storage system for
low earth orbit application by operating two single water electrolysis
cells at greater than 1,378 kPa (200 psia). :

3. Perform an applications study to quantify the weight, power and cost
savings associated with using the static feed, alkaline electrolyte
electrolyzer concept as part of a low earth orbit, regenerative fuel
cell power storage concept.

4. Initiate a cell area scale-up from the present 0.0093 nz 0.1 ft?)
to a cell area sufficiently large for multi-kilowatt power storage
applications.
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APPENLIX 1
SWEC TEST STAND
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APPENDIX 2 STEADY-STATE ACTUATOR CONDI'TTONS

Cell Current Pumps Heaters
Operating Mode PS-1 M1 M2 _Hl _H2
Shutdown (B) off off J0ff off off
Normal (A) On On On On On
Standby (E) off On On On On
Unpowered (D) off off off Off off
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APPENDIX 3 INTERMODE TRANSITION SEQUENCES

Normal to Shutdown (A to B)

1. Push the Shutdown button on the Operation Control (OpC). This
de-energizes the cell DC power supply, Hl, H2, M1 and M2. In the
case of a shutdown caused by tripping any test stand alarm, this
sequence happens automatically.

Normal to Standby (A to E)

1. Push the Standby button on the OpC. This de-energizes the cell DC
power supply. This transition can only happen manually.

Standby to Normal (£ to A)

1.  Push the Normal button on the Opf. This energizes the cell DC power
supply. This transition can only happen manually.

Shutdown to Standby (B to E)

1. Push the Standby button on the OpC. This energizes M1, M2, H1 and
H2 and activates the fault detection of the two fluid circulation
loops. This transition can only happen manually.

Standby to Shutdown (E to B)
1. Push the Shutdowe button on the OpC. This de-energizes H2, H1, M2

and M1. In the case of a shutdown caused by tripping any of the
activated test stand alarms, this sequence happens automatically.
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