986 research outputs found
A newly identified prophage-encoded gene, <i>ymfM</i>, causes SOS-inducible filamentation in <i>Escherichia coli</i>.
Rod-shaped bacteria such as Escherichia coli can regulate cell division in response to stress, leading to filamentation, a process where cell growth and DNA replication continues in the absence of division, resulting in elongated cells. The classic example of stress is DNA damage which results in the activation of the SOS response. While the inhibition of cell division during SOS has traditionally been attributed to SulA in E. coli, a previous report suggests that the e14 prophage may also encode an SOS-inducible cell division inhibitor, previously named SfiC. However, the exact gene responsible for this division inhibition has remained unknown for over 35 years. A recent high-throughput over-expression screen in E. coli identified the e14 prophage gene, ymfM, as a potential cell division inhibitor. In this study, we show that the inducible expression of ymfM from a plasmid causes filamentation. We show that this expression of ymfM results in the inhibition of Z ring formation and is independent of the well characterised inhibitors of FtsZ ring assembly in E. coli, SulA, SlmA and MinC. We confirm that ymfM is the gene responsible for the SfiC phenotype as it contributes to the filamentation observed during the SOS response. This function is independent of SulA, highlighting that multiple alternative division inhibition pathways exist during the SOS response. Our data also highlight that our current understanding of cell division regulation during the SOS response is incomplete and raises many questions regarding how many inhibitors there actually are and their purpose for the survival of the organism.Importance:Filamentation is an important biological mechanism which aids in the survival, pathogenesis and antibiotic resistance of bacteria within different environments, including pathogenic bacteria such as uropathogenic Escherichia coli Here we have identified a bacteriophage-encoded cell division inhibitor which contributes to the filamentation that occurs during the SOS response. Our work highlights that there are multiple pathways that inhibit cell division during stress. Identifying and characterising these pathways is a critical step in understanding survival tactics of bacteria which become important when combating the development of bacterial resistance to antibiotics and their pathogenicity
Formation and structural chemistry of the unusual cyanide-bridged dinuclear species [Ru-2(NN)(2)(CN)(7)](3-)(NN=2,2 '-bipyridine or 1,10-phenanthroline)
Crystallisation of simple cyanoruthenate complex anions [Ru(NN)(CN)(4)](2) (NN = 2,2'-bipyridine or 1,10-phenanthroline) in the presence of Lewis-acidic cations such as Ln(III) or guanidinium cations results, in addition to the expected [Ru(NN)(CN)(4)](2) salts, in the formation of small amounts of salts of the dinuclear species [Ru-2(NN)(2)(CN)(7)](3). These cyanide-bridged anions have arisen from the combination of two monomer units [Ru(NN)(CN)(4)](2) following the loss of one cyanide, presumably as HCN. The crystal structures of [Nd(H2O)(5.5)][Ru-2(bipy)(2)(CN)(7)] center dot 11H(2)O and [Pr(H2O)(6)][Ru-2(phen)(2)(CN)(7)] center dot 9H(2)O show that the cyanoruthenate anions form Ru-CN-Ln bridges to the Ln(III) cations, resulting in infinite coordination polymers consisting of fused Ru(2)Ln(2)(mu-CN)(4) squares and Ru(4)Ln(2)(mu-CN)(6) hexagons, which alternate to form a one-dimensional chain. In [CH6N3](3)[Ru-2(bipy)(2)(CN)(7)] center dot 2H(2)O in contrast the discrete complex anions are involved in an extensive network of hydrogen-bonding involving terminal cyanide ligands, water molecules, and guanidinium cations. In the [Ru-2(NN)(2)(CN)(7)](3) anions themselves the two NN ligands are approximately eclipsed, lying on the same side of the central Ru-CN-Ru axis, such that their peripheries are in close contact. Consequently, when NN = 4,4'-Bu-t(2)-2,2'-bipyridine the steric bulk of the t-butyl groups prevents the formation of the dinuclear anions, and the only product is the simple salt of the monomer, [CH6N3](2)[Ru((t)Bu(2)bipy)(CN)(4)] center dot 2H(2)O. We demonstrated by electrospray mass spectrometry that the dinuclear by-product [Ru-2(phen)(2)(CN)(7)](3) could be formed in significant amounts during the synthesis of monomeric [Ru(phen)(CN)(4)](2) if the reaction time was too long or the medium too acidic. In the solid state the luminescence properties of [Ru-2(bipy)(2)(CN)(7)](3) (as its guanidinium salt) are comparable to those of monomeric [Ru(bipy)(CN)(4)](2), with a (MLCT)-M-3 emission at 581 nm
Honey can inhibit and eliminate biofilms produced by Pseudomonas aeruginosa
© 2019, The Author(s). Chronic wound treatment is becoming increasingly difficult and costly, further exacerbated when wounds become infected. Bacterial biofilms cause most chronic wound infections and are notoriously resistant to antibiotic treatments. The need for new approaches to combat polymicrobial biofilms in chronic wounds combined with the growing antimicrobial resistance crisis means that honey is being revisited as a treatment option due to its broad-spectrum antimicrobial activity and low propensity for bacterial resistance. We assessed four well-characterised New Zealand honeys, quantified for their key antibacterial components, methylglyoxal, hydrogen peroxide and sugar, for their capacity to prevent and eradicate biofilms produced by the common wound pathogen Pseudomonas aeruginosa. We demonstrate that: (1) honey used at substantially lower concentrations compared to those found in honey-based wound dressings inhibited P. aeruginosa biofilm formation and significantly reduced established biofilms; (2) the anti-biofilm effect of honey was largely driven by its sugar component; (3) cells recovered from biofilms treated with sub-inhibitory honey concentrations had slightly increased tolerance to honey; and (4) honey used at clinically obtainable concentrations completely eradicated established P. aeruginosa biofilms. These results, together with their broad antimicrobial spectrum, demonstrate that manuka honey-based wound dressings are a promising treatment for infected chronic wounds, including those with P. aeruginosa biofilms
Trauma Team Activation for Geriatric Trauma at a Level II Trauma Center: Are the Elderly Under-triaged?
Abstract
Geriatric patients often sustain life-threatening injuries from minor trauma. A growing body of research suggests that these patients are often under-triaged in the emergency setting.The purpose of this research was to evaluate whether or not geriatric trauma patients are under-triaged at a community based level II trauma center.
1434 trauma patients over the age of 65 presenting from 2010-2015 were retrospectively reviewed from the Cabell Huntington Hospital trauma registry and analyzed for age, gender, arrival type, ED response, Glasgow Coma Scale (GCS), Injury Severity Score (ISS), injury cause, ICD-9 diagnosis codes, and mortality. Under-triage and over-triage rates were determined using the Cribari method (under-triage = ISS ≥ 16 without full trauma team activation [TTA]; Over-triage = ISS ≤ 15 with full TTA).
The under-triage rate was 9.5% (132/1393) with the majority of under-triaged patients having head trauma (n=423). There were 371 head trauma patients with a recorded GCS and analysis shows those with a GCS ≥ 13 had a 1.2% mortality risk (n=326; ISS 10.2), but that risk drastically increases to 60% with GSC ≤ 12 (n=45; ISS 21.5). Of the 45 patients with GSC ≤ 12, only 4% had priority 1 TTA using the current protocol (2/45).
The American College of Surgeons-Committee of Trauma (ACS-COT) recommends an acceptable under-triage rate of \u3c 5%. In order to improve geriatric care and reduce under-triage rates, we recommend that an age-based criteria be added to our TTA protocol at our community based Level II trauma center: priority 1 TTA for all patients 65 years or older sustaining head trauma with a GCS ≤ 12 or suspicion of intracranial hemorrhage
Harnessing Single Cell Sorting to Identify Cell Division Genes and Regulators in Bacteria
Cell division is an essential cellular process that requires an array of known and unknown proteins for its spatial and temporal regulation. Here we develop a novel, high-throughput screening method for the identification of bacterial cell division genes and regulators. The method combines the over-expression of a shotgun genomic expression library to perturb the cell division process with high-throughput flow cytometry sorting to screen many thousands of clones. Using this approach, we recovered clones with a filamentous morphology for the model bacterium, Escherichia coli. Genetic analysis revealed that our screen identified both known cell division genes, and genes that have not previously been identified to be involved in cell division. This novel screening strategy is applicable to a wide range of organisms, including pathogenic bacteria, where cell division genes and regulators are attractive drug targets for antibiotic development. © 2013 Burke et al
Antibiotic-specific differences in the response of Staphylococcus aureus to treatment with antimicrobiala combined with manuka honey
Skin infections caused by antibiotic resistant Staphylococcus aureus are a significant health problem worldwide; often associated with high treatment cost and mortality rate. Complex natural products like New Zealand (NZ) manuka honey have been revisited and studied extensively as an alternative to antibiotics due to their potent broad-spectrum antimicrobial activity, and the inability to isolate honey-resistant S. aureus. Previous studies showing synergistic effects between manuka-type honeys and antibiotics have been demonstrated against the growth of one methicillin-resistant S. aureus (MRSA) strain. We have previously demonstrated strong synergistic activity between NZ manuka-type honey and rifampicin against growth and biofilm formation of multiple S. arueus strains. Here, we have expanded our investigation using multiple S. aureus strains and four different antibiotics commonly used to treat S. aureus-related skin infections: rifampicin, oxacillin, gentamicin, and clindamycin. Using checkerboard microdilution and agar diffusion assays with S. aureus strains including clinical isolates and MRSA we demonstrate that manuka-type honey combined with these four antibiotics frequently produces a synergistic effect. In some cases when synergism was not observed, there was a significant enhancement in antibiotic susceptibility. Some strains that were highly resistant to an antibiotic when present alone become sensitive to clinically achievable concentrations when combined with honey. However, not all of the S. aureus strains tested responded in the same way to these combinational treatments. Our findings support the use of NZ manuka-type honeys in clinical treatment against S. aureus-related infections and extend their potential use as an antibiotic adjuvant in combinational therapy. Our data also suggest that manuka-type honeys may not work as antibiotic adjuvants for all strains of S. aureus, and this may help determine the mechanistic processes behind honey synergy
A longitudinal study of the diabetic skin and wound microbiome
© 2017 Gardiner et al. Type II diabetes is a chronic health condition which is associated with skin conditions including chronic foot ulcers and an increased incidence of skin infections. The skin microbiome is thought to play important roles in skin defence and immune functioning. Diabetes affects the skin environment, and this may perturb skin microbiome with possible implications for skin infections and wound healing. This study examines the skin and wound microbiome in type II diabetes. Methods. Eight type II diabetic subjects with chronic foot ulcers were followed over a time course of 10 weeks, sampling from both foot skin (swabs) and wounds (swabs and debrided tissue) every two weeks. A control group of eight control subjects was also followed over 10 weeks, and skin swabs collected from the foot skin every two weeks. Samples were processed for DNA and subject to 16S rRNA gene PCR and sequencing of the V4 region. Results. The diabetic skin microbiome was significantly less diverse than control skin. Community composition was also significantly different between diabetic and control skin, however the most abundant taxa were similar between groups, with differences driven by very low abundant members of the skin communities. Chronic wounds tended to be dominated by the most abundant skin Staphylococcus, while other abundant wound taxa differed by patient. No significant correlations were found between wound duration or healing status and the abundance of any particular taxa. Discussion. The major difference observed in this study of the skin microbiome associated with diabetes was a significant reduction in diversity. The long-term effects of reduced diversity are not yet well understood, but are often associated with disease conditions
- …