12 research outputs found

    Spatiotemporal Variation of Microbial Communities in the Ultra-Oligotrophic Eastern Mediterranean Sea

    Get PDF
    Marine microbial communities vary seasonally and spatially, but these two factors are rarely addressed together. In this study, the temporal and spatial patterns of the bacterial and archaeal community were studied along a coast-to-offshore transect in the Eastern Mediterranean Sea (EMS) over six cruises, in three seasons of 2 consecutive years. Amplicon sequencing of 16S rRNA genes and transcripts was performed to determine presence and activity, respectively. The ultra-oligotrophic status of the Southeastern Mediterranean Sea was reflected in the microbial community composition dominated by oligotrophic bacterial groups such as SAR11, even at the most coastal station sampled, throughout the year. Seasons significantly affected the microbial communities, explaining more than half of the observed variability. However, the same few taxa dominated the community over the 2-year sampling period, varying only in their degree of dominance. While there was no overall effect of station location on the microbial community, the most coastal site (16 km offshore) differed significantly in community structure and activity from the three further offshore stations in early winter and summer. Our data on the microbial community compositions and their seasonality support previous notions that the EMS behaves like an oceanic gyre.This study was funded by the Israel Science Foundation grant (ISF #1243/16) to LS and from the United States-Israel Binational Science Foundation (BSF, no. 2019612 to LS) and the United States National Science Foundation (NSF, OCE1924464 to LG-C). The seasonal cruises were supported by funding from the Leon H. Charney School of Marine Sciences (Haifa University, Israel). MH was supported by an Inter-Institutional post-doctoral fellowship from the Haifa University and a Helmsley Trust fellowship.Peer reviewe

    Lifestyle evolution in cyanobacterial symbionts of sponges.

    No full text

    Lifestyle evolution in cyanobacterial symbionts of sponges

    Get PDF
    © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in mBio 6 (2015): e00391-15, doi:10.1128/mBio.00391-15.The “Candidatus Synechococcus spongiarum” group includes different clades of cyanobacteria with high 16S rRNA sequence identity (~99%) and is the most abundant and widespread cyanobacterial symbiont of marine sponges. The first draft genome of a “Ca. Synechococcus spongiarum” group member was recently published, providing evidence of genome reduction by loss of genes involved in several nonessential functions. However, “Ca. Synechococcus spongiarum” includes a variety of clades that may differ widely in genomic repertoire and consequently in physiology and symbiotic function. Here, we present three additional draft genomes of “Ca. Synechococcus spongiarum,” each from a different clade. By comparing all four symbiont genomes to those of free-living cyanobacteria, we revealed general adaptations to life inside sponges and specific adaptations of each phylotype. Symbiont genomes shared about half of their total number of coding genes. Common traits of “Ca. Synechococcus spongiarum” members were a high abundance of DNA modification and recombination genes and a reduction in genes involved in inorganic ion transport and metabolism, cell wall biogenesis, and signal transduction mechanisms. Moreover, these symbionts were characterized by a reduced number of antioxidant enzymes and low-weight peptides of photosystem II compared to their free-living relatives. Variability within the “Ca. Synechococcus spongiarum” group was mostly related to immune system features, potential for siderophore-mediated iron transport, and dependency on methionine from external sources. The common absence of genes involved in synthesis of residues, typical of the O antigen of free-living Synechococcus species, suggests a novel mechanism utilized by these symbionts to avoid sponge predation and phage attack.Support for this study was provided by a USA-Israel Binational Science Foundation Young Investigator grant (BSF no. 4161011) to L.S. and a DOE Joint Genome Institute grant (CSP 1291) to U.H.; B.M.S. was supported by a grant of the German Excellence Initiative to the Graduate School of Life Sciences, University of Würzburg

    In search of alternative antibiotic drugs: Quorum-quenching activity in sponges and their bacterial isolates

    No full text
    Owing to the extensive development of drug resistance in pathogens against the available antibiotic arsenal, antimicrobial resistance is now an emerging major threat to public healthcare. Anti-virulence drugs are a new type of therapeutic agent aiming at virulence factors rather than killing the pathogen, thus providing less selective pressure for evolution of resistance. One promising example of this therapeutic concept targets bacterial quorum sensing (QS), because QS controls many virulence factors responsible for bacterial infections. Marine sponges and their associated bacteria are considered a still untapped source for unique chemical leads with a wide range of biological activities. In the present study, we screened extracts of 14 sponge species collected from the Red and Mediterranean Sea for their quorum-quenching (QQ) potential. Half of the species showed QQ activity in at least 2 out of 3 replicates. Six out of the 14 species were selected for bacteria isolation, to test for QQ activity also in isolates, which, once cultured, represent an unlimited source of compounds. We show that ≈20% of the isolates showed QQ activity based on a Chromobacterium violaceum CV026 screen, and that the presence or absence of QQ activity in a sponge extract did not correlate with the abundance of isolates with the same activity from the same sponge species. This can be explained by the unknown source of QQ compounds in sponge-holobionts (host or symbionts), and further by the possible non-symbiotic nature of bacteria isolated from sponges. The potential symbiotic nature of the isolates showing QQ activity was tested according to the distribution and abundance of taxonomically close bacterial Operational Taxonomic Units (OTUs) in a dataset including 97 sponge species and 178 environmental samples (i.e., seawater, freshwater, and marine sediments). Most isolates were found not to be enriched in sponges and may simply have been trapped in the filtration channels of the sponge at the time of collection. Our results highlight potential for QQ-bioactive lead molecules for anti-virulence therapy both from sponges and the bacteria isolated thereof, independently on the symbiotic nature of the latter

    Functional characterization and taxonomic classification of novel gammaproteobacterial diversity in sponges

    No full text
    Sponges harbour exceptionally diverse microbial communities, whose members are largely uncultured. The class Gammaproteobacteria often dominates the microbial communities of various sponge species, but most of its diversity remains functional and taxonomically uncharacterised. Here we reconstructed and characterised 32 metagenome-assembled genomes (MAGs) derived from three sponge species. These MAGs represent ten novel species and belong to seven orders, of which one is new. We propose nomenclature for all these taxa. These new species comprise sponge-specific bacteria with varying levels of host specificity. Functional gene profiling highlights significant differences in metabolic capabilities across the ten species, though each also often exhibited a large degree of metabolic diversity involving various nitrogen- and sulfur-based compounds. The genomic features of the ten species suggest they have evolved to form symbiotic interaction with their hosts or are well-adapted to survive within the sponge environment. These Gammaproteobacteria are proposed to scavenge substrates from the host environment, including metabolites or cellular components of the sponge. Their diverse metabolic capabilities may allow for efficient cycling of organic matter in the sponge environment, potentially to the benefit of the host and other symbionts

    Isolation, Genomic and Metabolomic Characterization of Streptomyces tendae VITAKN with Quorum Sensing Inhibitory Activity from Southern India

    No full text
    Streptomyces are among the most promising genera in terms of production ability to biosynthesize a variety of bioactive secondary metabolites with pharmaceutical interest. Coinciding with the increase in genomic sequencing of these bacteria, mining of their genomes for biosynthetic gene clusters (BGCs) has become a routine component of natural product discovery. Herein, we describe the isolation and characterization of a Streptomyces tendae VITAKN with quorum sensing inhibitory (QSI) activity that was isolated from southern coastal part of India. The nearly complete genome consists of 8,621,231bp with a GC content of 72.2%. Sequence similarity networks of the BGCs detected from this strain against the Minimum Information about a Biosynthetic Gene Cluster (MIBiG) database and 3365 BGCs predicted by antiSMASH analysis of publicly available complete Streptomyces genomes were generated through the BiG-SCAPE-CORASON platform to evaluate its biosynthetic novelty. Crude extract analysis using high-performance liquid chromatography connected to high resolution tandem mass spectrometry (HPLC-HRMS/MS) and dereplication through the Global Natural Product Social Molecular Networking (GNPS) online workflow resulted in the identification of cyclic dipeptides (2, 5-diketopiperazines, DKPs) in the extract, which are known to possess QSI activity. Our results highlight the potential of genome mining coupled with LC-HRMS/MS and in silico tools (GNPS) as a valid approach for the discovery of novel QSI lead compounds. This study also provides the biosynthetic diversity of BGCs and an assessment of the predicted chemical space yet to be discovered
    corecore