458 research outputs found

    Magmas In Motion: Degassing In Volcanic Conduits And Fabrics Of Pyroclastic Density Current

    Get PDF
    Thesis (Ph.D.) University of Alaska Fairbanks, 2003Volcanoes are caused by the transport of magma batches from the Earth's crust to the surface. These magmas in motion undergo drastic changes of rheologic properties during their journey to the surface and this work explores how these changes affect volcanic eruptions. The first part of this study is devoted to the dynamic aspects of degassing and permeability in magmas with high pressure, high temperature experiments on natural volcanic rocks. Degassing is measured by the influence of decompression rate on the growth of the bubbles present in the magma while permeability is deduced from the temporal evolution of these bubbles. The parameterization of our results in a numerical model of volcanic conduit flow show that previous models based on equilibrium degassing overestimate the acceleration and the decompression rate of the magma. Assessing permeability effects derived form our results show that the transition between explosive and effusive eruptions is a strong function of the magma initial ascent rate. The second part of this work is a unification of two end-members of pyroclastic currents (highly concentrated pyroclastic flows and dilute, turbulent pyroclastic surges) using theoretical scaling arguments based on multiphase physics. Starting from the dynamics of the particle interactions with a fundamental eddy, we consider the full spectrum of eddies generated within a turbulent current. We demonstrate that the presence of particles with various sizes induces a density stratification of the current, leading to its segregation into a basal concentrated part overlain by a dilute cloud. To verify our predictions on the interactions of such a segregated pyroclastic current with its surroundings (hills and sea), we studied the products of the 2050 BP caldera-forming eruption of Okmok Volcano (Alaska). This field study allowed us to reconstruct the eruptive sequence and to validate the main aspects of our theoretical model, such as the superposition of a dense and dilute part, their decoupling at sea entrance and the characteristics of the particles they transport

    Smooth analysis of the condition number and the least singular value

    Full text link
    Let \a be a complex random variable with mean zero and bounded variance. Let NnN_{n} be the random matrix of size nn whose entries are iid copies of \a and MM be a fixed matrix of the same size. The goal of this paper is to give a general estimate for the condition number and least singular value of the matrix M+NnM + N_{n}, generalizing an earlier result of Spielman and Teng for the case when \a is gaussian. Our investigation reveals an interesting fact that the "core" matrix MM does play a role on tail bounds for the least singular value of M+NnM+N_{n} . This does not occur in Spielman-Teng studies when \a is gaussian. Consequently, our general estimate involves the norm M\|M\|. In the special case when M\|M\| is relatively small, this estimate is nearly optimal and extends or refines existing results.Comment: 20 pages. An erratum to the published version has been adde

    Experimental Constraints on Degassing and Permeability in Volcanic Conduit Flow.

    No full text
    This study assesses the effect of decompression rate on two processes that directly influence the behavior of volcanic eruptions: degassing and permeability in magmas. We studied the degassing of magma with experiments on hydrated natural rhyolitic glass at high pressure and temperature. From the data collected, we defined and characterized one degassing regime in equilibrium and two regimes in disequilibrium. Equilibrium bubble growth occurs when the decompression rate is slower than 0.1 MPa s-1, while higher rates cause porosity to deviate rapidly from equilibrium, defining the first disequilibrium regime of degassing. If the deviation is large enough, a critical threshold of super-saturation is reached and bubble growth accelerates, defining the second disequilibrium regime. We studied permeability and bubble coalescence in magma with experiments using the same rhyolitic melt in open degassing conditions. Under these open conditions, we observed that bubbles start to coalesce at ~43 vol.% porosity, regardless of decompression rate. Coalescence profoundly affects bubble texture and size distributions, and induces the melt to become permeable. We parameterized and incorporated our experimental results into a 1D conduit flow model to explore the implications of our findings on eruptive behavior of rhyolitic melts with low crystal contents stored in the upper crust. Compared to previous models that assume equilibrium degassing of the melt during ascent, the introduction of disequilibrium degassing reduces the deviation from lithostatic pressure by ~ 25 %, the acceleration at high porosities (> 50 vol.%) by a factor 5, and the associated decompression rate by an order of magnitude. The integration of the time scale of coalescence to the model shows that the transition between explosive and effusive eruptive regimes is sensitive to small variations of the initial magma ascent speed, and that flow conditions near fragmentation may significantly be affected by bubble coalescence and gas escape

    A model of the geochemical and physical fluctuations of the lava lake at Erebus volcano, Antarctica

    Get PDF
    Erebus volcano, Antarctica, exhibits periodical surface fluctuations of both geochemical and physical nature. Modeling the physics driving the lake oscillation is a challenge, even with a relatively simple theoretical framework. We present a quantitative analysis that aims to reconcile both lake level and gas geochemical cycles. Our model is based on the assumption that the periodicity is caused by the regular release of magma batches and/or core annular flow that have a fixed volume of melt and ascend and degas in equilibrium. Results suggest that cycles are not caused by the mixing between magma residing in the lake and a deep magma but by two distinct deep sources that rise separately. These sources of bubbly magma come from at most 2–3 km depth and rise buoyantly. Individual batches detach from the rising magmas at depths of 20–250 m. The two batch types can coexist in a single conduit up to a depth of ~ 30 m, above which they rise alternately to release respectively 19 and 23 kg/s of gas at the lake surface every 10 min. The temperature of the descending flow is between 890 and 950 °C, which is roughly 100 °C colder than the ascending currents. Batch pairs have shapes likely constrained by the conduit width. Regardless of their shapes, the pairs reach very high porosities near the surface and have diameters of 4–14 m that are consistent with video observations showing spreading waves at the lake surface. The alternating arrival of these large batches suggests a lava lake mostly filled with gas-rich magma.This work is part of the first author's PhD thesis, which was funded by the 7th Framework Program of the EC (ERC grant 202844) and by Senescyt under the Prometeo Program (Ecuador). CO acknowledges support from the Isaac Newton Trust (project “Physical constraints for the interpretation of open-vent volcanism”) and the Natural Environment Research Council (National Centre for Earth Observation: COMET).This is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/j.jvolgeores.2015.10.02

    Simulating the behavior of volatiles belonging tothe C-O-H-S system in silicate melts undermagmatic conditions with the software d-compress

    Get PDF
    International audienceModeling magmatic degassing, or how the volatile distribution between gas and meltchanges at pressure varies, is a complex task that involves a large number ofthermodynamical relationships and that requires dedicated software. This article presents thesoftware D-Compress, which computes the gas and melt volatile composition of five elementsets in magmatic systems (O-H, S-O-H, C-S-O-H, C-S-O-H-Fe, and C-O-H). It has beencalibrated so as to simulate the volatiles coexisting with three common types of silicate melts(basalt, phonolite, and rhyolite). Operational temperatures depend on melt composition andrange from 790 to 1400°C. A specificity of D-Compress is the calculation of volatilecomposition as pressure varies along a (de)compression path between atmospheric and 3000bars. This software was prepared so as to maximize versatility by proposing different sets ofinput parameters. In particular, whenever new solubility laws on specific melt compositionsare available, the model parameters can be easily tuned to run the code on that composition.Parameter gaps were minimized by including sets of chemical species for which calibrationdata were available over a wide range of pressure, temperature, and melt composition. A briefdescription of the model rationale is followed by the presentation of the software capabilities.Examples of use are then presented with outputs comparisons between D-Compress and othercurrently available thermodynamical models. The compiled software and the source code areavailable as electronic supplementary materials

    Addressing Complexity in Laboratory Experiments: The Scaling of Dilute Multiphase Flows in Magmatic Systems.

    No full text
    The kinematic and dynamic scaling of dilute multiphase mixtures in magmatic systems is the only guarantee for the geological verisimilitude of laboratory experiments. We present scaling relations that can provide a more complete framework to scale dilute magmatic systems because they explicitly take into account the complexity caused by the feedback between particles (crystal, bubble, or pyroclast) and the continuous phase (liquid or gas). We consider three canonical igneous systems: magma chambers, volcanic plumes, and pyroclastic surges, and we provide estimates of the proposed scaling relations for published experiments on those systems. Dilute magmatic mixtures can display a range of distinct dynamical regimes that we characterize with a combination of average (Eulerian) properties and instantaneous (Lagrangian) variables. The Eulerian properties of the mixtures yield the Reynolds number (Re), which indicates the level of unsteadiness in the continuous phase. The Lagrangian acceleration of particles is a function of the viscous drag and gravity forces, and from these two forces are derived the Stokes number (ST) and the stability number (ΣT), two dimensionless numbers that describe the dynamic behavior of the particles within the mixture. The compilation of 17 experimental studies relevant for pyroclastic surges and volcanic plumes indicates that there is a need for experiments above the mixing transition (Re>104), and for scaling ST and ΣT. Among the particle dynamic regimes present in surges and plumes, some deserve special attention, such as the role of mesoscale structures on transport and sedimentary processes, or the consequences of the transition to turbulence on particle gathering and dispersal. The compilation of 7 experimental studies relevant to magma bodies indicates that in the laminar regime, crystals mostly follow the motion of the melt, and thus the physical state of the system can be approximated as single phase. In the transition to turbulence, magmas can feature spatially heterogeneous distributions of laminar regions and important velocity gradients. This heterogeneity has a strong potential for crystals sorting. In conclusion, the Re-ST-ΣT framework demonstrates that, despite numerous experimental studies on processes relevant to magmatic systems, some and perhaps most, geologically important parameter ranges still need to be addressed at the laboratory scale

    Characterization of juvenile pyroclasts from the Kos Plateau Tuff (Aegean Arc): insights into the eruptive dynamics of a large rhyolitic eruption

    Get PDF
    Silicic pumices formed during explosive volcanic eruptions are faithful recorders of the state of the magma in the conduit, close to or at the fragmentation level. We have characterized four types of pumices from the non-welded rhyolitic Kos Plateau Tuff, which erupted 161,000years ago in the East Aegean Arc, Greece. The dominant type of pumice (>90vol.%) shows highly elongated tubular vesicles. These tube pumices occur throughout the eruption. Less common pumice types include: (1) "frothy” pumice (highly porous with large, sub-rounded vesicles), which form 5-10vol.% of the coarsest pyroclastic flow deposits, (2) dominantly "microvesicular” and systematically crystal-poor pumices, which are found in early erupted, fine-grained pyroclastic flow units, and are characterized by many small (<50μm in diameter) vesicles and few mm-sized, irregular voids, (3) grey or banded pumices, indicating the interaction between the rhyolite and a more mafic magma, which are found throughout the eruption sequence and display highly irregular bubble shapes. Except for the grey-banded pumices, all three other types are compositionally identical and were generated synchronously as they are found in the same pyroclastic units. They, therefore, record different conditions in the volcanic conduit leading to variable bubble nucleation, growth and coalescence. A total of 74 pumice samples have been characterized using thin section observation, SEM imagery, porosimetry, and permeametry. We show that the four pumice types have distinct total and connected porosity, tortuosity and permeability. Grey-banded pumices show large variations in petrophysical characteristics as a response to mingling of two different magmas. The microvesicular, crystal-poor, pumices have a bimodal bubble size distribution, interpreted as reflecting an early heterogeneous bubble nucleation event followed by homogeneous bubble nucleation close to fragmentation. Finally, the significant differences in porosity, tortuosity and permeability in compositionally identical tube and frothy pumices are the result of variable shear rates in different parts of the conduit. Differential shear rates may be the result of either: (1) pure shear, inducing a vertical progression from frothy to tube and implying a relatively thick fragmentation zone to produce both types of pumices at the same time or (2) localized simple shear, inducing strongly tubular vesicles along the wall and near-spherical bubbles in the centre of the conduit and not necessarily requiring a thick fragmentation zon

    Porosity redistribution enhanced by strain localization in crystal-rich magmas

    Get PDF
    International audienceMagma degassing, characterized by changes in permeability and porosity distribution, has a crucial control on the style of eruption. During ascent, magma might develop large porosities and crystallise while it is subjected to shear. Shear, in turn, enhances complex fabrics that result from the reorganization of the different phases (crystals, gas, melt). Such fabrics have not yet been evaluated experimentally on a 3-phase system. We performed torsion experiments on a synthetic crystal-rich hydrous magma at subsolidus conditions with 11 vol.% porosity to establish a link between strain partitioning and porosity redistribution. Crystals induce non-Newtonian deformation, resulting in localization of the shear strain. 3-D microtomography and 2-D Scanning Electron Microprobe (SEM) imaging show gas accumulation in local microstructures caused by shear-induced crystal fabric. Our data show that strain localization is a mechanism that could enable magma degassing at very low vesicularity

    Experimental constrains on shear-induced crystal breakage in magmas

    Get PDF
    International audienceCrystal breakage occurs along margins of conduit walls and basal zones of lava flows. It is usually interpreted as flow-related textures developed at large finite strains and strains rates. We have investigated the grain size and shape distributions in an experimentally deformed crystal-melt suspension in order to constrain the temperature T, the strain γ and the strain rate γr ranges of the crystal breakage process. The starting crystal-melt suspension is composed of a haplogranitic melt with 54 vol% alumina crystals. Torsion experiments were performed in a gas medium Paterson apparatus at 300 MPa confining pressure and subsolidus temperatures. Crystal size distribution and aspect ratio of alumina grains were measured on polished sections normal to the shear direction, i.e. from the centre to the rim of the deformed cylinders. A first minor occurrence of crystal breakage is evidenced in all experiments and low strains. It is related to intense stress localisation at some grain contacts in the initially connected solid framework. A second intense and penetrative crystal breakage process is observed for T≤ 550°C and γr > 6.2x10-4 s- 1. The evolution of the size distribution as a function of finite strain and the reduced aspect ratios of preserved largest crystals in intensely strained zones support that breakage occurs by abrasion of the larger crystals. This abrasion can be attributed to the partial stress propagation over both the melt and partially isolated crystals under visco-elastic conditions. Mechanical data show a transition from slight shear softening at low strain rates and highest temperatures to strain hardening for experiments that produced penetrative crystal breakage. The crystal-melt suspension exhibits a shear thinning behaviour with a stress exponent larger than 2.06 over the explored strain rate and temperature domain for the experiments without intensive crystal breakage. Our results are applicable to the interpretation of the crystal breakage often observed at the base of lava flows, in domes, and near conduit walls. This experimental reproduction of a process observed in nature is important because the controls of stress-induced breakage we quantified are also key parameters governing magma transport

    Transient degassing events at the lava lake of Erebus volcano, Antarctica: Chemistry and mechanisms

    Get PDF
    We report here on the chemical signature of degassing at Erebus lava lake associated with intermittent explosions and the return to passive conditions. Explosions caused by bubble bursts were frequent during the 2013 field season, providing the first opportunity to observe such activity since 2005-2006. Several of the explosions were captured by multiple instruments including an open-path Fourier transform infrared spectrometer. Explosive bubble bursts and other transient degassing events are associated with gas compositions that are distinct from the usual range of passive degassing compositions. We set out to compare the chemical signature of explosive degassing during the 2005-06 and 2013 episodes, and to characterise the chemistry of gases emitted during the period of lake refilling after explosions. We found little change in the explosive gas chemistry between 2005-06 and 2013, suggesting reactivation of a common mechanism of gas segregation. Bubbles can be distinguished by their size and composition, the ranges of which are likely modified during ascent by gas-melt interaction and adiabatic expansion. The proportions of water, SO2, and HCl in the emitted gas plume increase during the refill of the lake after explosions, as the lake is recharged by a combination of magma that has already partially degassed, and that vesiculates rapidly in response to the drop in magmastatic pressure at the lake.TI acknowledges doctoral grants from the AXA Research Fund and the William Georgetti trust. Fieldwork was carried out with the support of the G-081 Erebus team and the US Antarctic Program, funded by NSF grant ANT1142083. The original FTIR retrieval code was written by Mike Burton with modifications made by Georgina Sawyer. Thermal IR images and lake velocity data were supplied by Nial Peters. Support was also received from grant 202844 from the European Research Council under the European FP7 and the NERC Centre for the Observation and Modelling of Earthquakes, Volcanoes and Tectonics (COMET), part of the NERC-funded National Centre for Earth Observation (http://comet.nerc.ac.uk/).This is the final version. It first appeared at http://www.sciencedirect.com/science/article/pii/S2214242815000327
    corecore