1,616 research outputs found

    Exciton dissociation at donor-acceptor polymer heterojunctions: quantum nonadiabatic dynamics and effective-mode analysis

    Full text link
    The quantum-dynamical mechanism of photoinduced subpicosecond exciton dissociation and the concomitant formation of a charge-separated state at a TFB:F8BT polymer heterojunction is elucidated. The analysis is based upon a two-state vibronic coupling Hamiltonian including an explicit 24-mode representation of a phonon bath comprising high-frequency (C==C stretch) and low-frequency (torsional) modes. The initial relaxation behavior is characterized by coherent oscillations, along with the decay through an extended nonadiabatic coupling region. This region is located in the vicinity of a conical intersection hypersurface. A central ingredient of the analysis is a novel effective mode representation, which highlights the role of the low-frequency modes in the nonadiabatic dynamics. Quantum dynamical simulations were carried out using the multiconfiguration time-dependent Hartree (MCTDH) method

    My Evolving Program for Negro Freedom

    Get PDF
    This autobiographical essay, published in 1944, defines freedom for Negroes and identifies the paths taken by Du Bois to achieve this freedom

    Phonon-driven ultrafast exciton dissociation at donor-acceptor polymer heterojunctions

    Full text link
    A quantum-dynamical analysis of phonon-driven exciton dissociation at polymer heterojunctions is presented, using a hierarchical electron-phonon model parameterized for three electronic states and 24 vibrational modes. Two interfering decay pathways are identified: a direct charge separation, and an indirect pathway via an intermediate bridge state. Both pathways depend critically on the dynamical interplay of high-frequency C=C stretch modes and low-frequency ring-torsional modes. The ultrafast, highly non-equilibrium dynamics is consistent with time-resolved spectroscopic observations

    Single Molecule Fluorescence Image Patterns Linked to Dipole Orientation and Axial Position: Application to Myosin Cross-Bridges in Muscle Fibers

    Get PDF
    Photoactivatable fluorescent probes developed specifically for single molecule detection extend advantages of single molecule imaging to high probe density regions of cells and tissues. They perform in the native biomolecule environment and have been used to detect both probe position and orientation.Fluorescence emission from a single photoactivated probe captured in an oil immersion, high numerical aperture objective, produces a spatial pattern on the detector that is a linear combination of 6 independent and distinct spatial basis patterns with weighting coefficients specifying emission dipole orientation. Basis patterns are tabulated for single photoactivated probes labeling myosin cross-bridges in a permeabilized muscle fiber undergoing total internal reflection illumination. Emitter proximity to the glass/aqueous interface at the coverslip implies the dipole near-field and dipole power normalization are significant affecters of the basis patterns. Other characteristics of the basis patterns are contributed by field polarization rotation with transmission through the microscope optics and refraction by the filter set. Pattern recognition utilized the generalized linear model, maximum likelihood fitting, for Poisson distributed uncertainties. This fitting method is more appropriate for treating low signal level photon counting data than χ(2) minimization.Results indicate that emission dipole orientation is measurable from the intensity image except for the ambiguity under dipole inversion. The advantage over an alternative method comparing two measured polarized emission intensities using an analyzing polarizer is that information in the intensity spatial distribution provides more constraints on fitted parameters and a single image provides all the information needed. Axial distance dependence in the emission pattern is also exploited to measure relative probe position near focus. Single molecule images from axial scanning fitted simultaneously boost orientation and axial resolution in simulation

    RNA secondary structure design

    Get PDF
    We consider the inverse-folding problem for RNA secondary structures: for a given (pseudo-knot-free) secondary structure find a sequence that has that structure as its ground state. If such a sequence exists, the structure is called designable. We implemented a branch-and-bound algorithm that is able to do an exhaustive search within the sequence space, i.e., gives an exact answer whether such a sequence exists. The bound required by the branch-and-bound algorithm are calculated by a dynamic programming algorithm. We consider different alphabet sizes and an ensemble of random structures, which we want to design. We find that for two letters almost none of these structures are designable. The designability improves for the three-letter case, but still a significant fraction of structures is undesignable. This changes when we look at the natural four-letter case with two pairs of complementary bases: undesignable structures are the exception, although they still exist. Finally, we also study the relation between designability and the algorithmic complexity of the branch-and-bound algorithm. Within the ensemble of structures, a high average degree of undesignability is correlated to a long time to prove that a given structure is (un-)designable. In the four-letter case, where the designability is high everywhere, the algorithmic complexity is highest in the region of naturally occurring RNA.Comment: 11 pages, 10 figure

    The potential therapeutic role of lymph node resection in epithelial ovarian cancer: a study of 13 918 patients

    Get PDF
    The aim of the study is to determine the role of lymphadenectomy in advanced epithelial ovarian cancer. The data were obtained from the Surveillance, Epidemiology and End Results (SEER) program reported between 1988 and 2001. Kaplan–Meier estimates and Cox proportional hazards regression models were used for analysis. Of 13 918 women with stage III–IV epithelial ovarian cancer (median age: 64 years), 87.9% were Caucasian, 5.6% African Americans, and 4.4% Asians. A total of 4260 (30.6%) underwent lymph node dissections with a median number of six nodes reported. For all patients, a more extensive lymph node dissection (0, 1, 2–5, 6–10, 11–20, and >20 nodes) was associated with an improved 5-year disease-specific survival of 26.1, 35.2, 42.6, 48.4, 47.5, and 47.8%, respectively (P<0.001). Of the stage IIIC patients with nodal metastases, the extent of nodal resection (1, 2–5, 6–10, 11–20, and >20 nodes) was associated with improved survivals of 36.9, 45.0, 47.8, 48.7, and 51.1%, respectively (P=0.023). On multivariate analysis, the extent of lymph node dissection and number of positive nodes were significant independent prognosticators after adjusting for age, year at diagnosis, stage, and grade of disease. The extent of lymphadenectomy is associated with an improved disease-specific survival of women with advanced epithelial ovarian cancer

    Cuticular wax coverage and its transpiration barrier properties in Quercus coccifera L. leaves: does the environment matter?

    Get PDF
    Plants prevent uncontrolled water loss by synthesizing, depositing and maintaining a hydrophobic layer over their primary aerial organs-the plant cuticle. Quercus coccifera L. can plastically respond to environmental conditions at the cuticular level. When exposed to hot summer conditions with high vapour-pressure deficit (VPD) and intense solar radiation (Mediterranean atmospheric conditions; MED), this plant species accumulates leaf cuticular waxes even over the stomata, thereby decreasing transpirational water loss. However, under mild summer conditions with moderate VPD and regular solar radiation (temperate atmospheric conditions; TEM), this effect is sharply reduced. Despite the ecophysiological importance of the cuticular waxes of Q. coccifera, the wax composition and its contribution to avoiding uncontrolled dehydration remain unknown. Thus, we determined several leaf traits for plants exposed to both MED and TEM conditions. Further, we qualitatively and quantitatively investigated the cuticular lipid composition by gas chromatography. Finally, we measured the minimum leaf conductance (gmin) as an indicator of the efficacy of the cuticular transpiration barrier. The MED leaves were smaller, stiffer and contained a higher load of cuticular lipids than TEM leaves. The amounts of leaf cutin and cuticular waxes of MED plants were 1.4 times and 2.6 times higher than that found for TEM plants, respectively. In detail, MED plants produced higher amounts of all compound classes of cuticular waxes, except for the equivalence of alkanoic acids. Although MED leaves contained higher cutin and cuticular wax loads, the gmin was not different between the two habitats. Our findings suggest that the qualitative accumulation of equivalent cuticular waxes might compensate for the higher wax amount of MED plants, thereby contributing equally to the efficacy of the cuticular transpirational barrier of Q. coccifera. In conclusion, we showed that atmospheric conditions profoundly affect the cuticular lipid composition of Q. coccifera leaves, but do not alter its transpiration barrier properties

    Cuticular wax coverage and its transpiration barrier properties in Quercus coccifera L. leaves: does the environment matter?

    Get PDF
    Plants prevent uncontrolled water loss by synthesizing, depositing and maintaining a hydrophobic layer over their primary aerial organs-the plant cuticle. Quercus coccifera L. can plastically respond to environmental conditions at the cuticular level. When exposed to hot summer conditions with high vapour-pressure deficit (VPD) and intense solar radiation (Mediterranean atmospheric conditions; MED), this plant species accumulates leaf cuticular waxes even over the stomata, thereby decreasing transpirational water loss. However, under mild summer conditions with moderate VPD and regular solar radiation (temperate atmospheric conditions; TEM), this effect is sharply reduced. Despite the ecophysiological importance of the cuticular waxes of Q. coccifera, the wax composition and its contribution to avoiding uncontrolled dehydration remain unknown. Thus, we determined several leaf traits for plants exposed to both MED and TEM conditions. Further, we qualitatively and quantitatively investigated the cuticular lipid composition by gas chromatography. Finally, we measured the minimum leaf conductance (gmin) as an indicator of the efficacy of the cuticular transpiration barrier. The MED leaves were smaller, stiffer and contained a higher load of cuticular lipids than TEM leaves. The amounts of leaf cutin and cuticular waxes of MED plants were 1.4 times and 2.6 times higher than that found for TEM plants, respectively. In detail, MED plants produced higher amounts of all compound classes of cuticular waxes, except for the equivalence of alkanoic acids. Although MED leaves contained higher cutin and cuticular wax loads, the gmin was not different between the two habitats. Our findings suggest that the qualitative accumulation of equivalent cuticular waxes might compensate for the higher wax amount of MED plants, thereby contributing equally to the efficacy of the cuticular transpirational barrier of Q. coccifera. In conclusion, we showed that atmospheric conditions profoundly affect the cuticular lipid composition of Q. coccifera leaves, but do not alter its transpiration barrier properties
    • …
    corecore