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The in vitro effects of viral replication on mitochondrial membrane potential (MMP) and gap junctional
intercellular communication (GJIC) were evaluated as two parameters of potential cellular injury. Two distinct
cell types were infected with the Petaluma strain of feline immunodeficiency virus (FIV). Primary astroglia
supported acute FIV infection, resulting in syncytia within 3 days of infection, whereas immortalized Crandell
feline kidney (CRFK) cells of epithelial origin supported persistent FIV infection in the absence of an obvious
cytopathic effect. An examination of cells under conditions that included an infection rate of miore than 90%
for either population revealed that the astroglia produced about four times more virus than the CRFK cells.
The mitochondrial uptake of the cationic fluorescent dye rhodamine 123 in infected astroglia was less than 45%
of that of normal control cells, whereas the MMP of the CRFK cells, which produced about one-fourth as much
virus, was 80.8% of that of the normal cells. Cell-cell communication between adjacent cells was determined by
the recovery of fluorescence following photobleaching of a single cell. In spite of the lower level of innate
cell-cell communication among cultured CRFK cells than among astroglia, viral replication resulted in a 30%
decrease in the GJIC of both astroglia and CRFK cells. These studies indicate that cell injury, as defined by
an inhibition of MMP and GJIC, can occur as a result of persistent and acute infection with the Petaluma

strain of FIV.

Feline immunodeficiency virus (FIV) is a common pathogen
of domestic cats throughout the world (24, 25, 37). Clinical
signs of FIV infection, such as wasting, diarrhea, lymphoid
atrophy, and opportunistic infections, resemble those attribut-
able to human immunodeficiency virus (HIV) infection in
humans (24, 37, 38, 42, 46). FIV, however, apparently has a
broader range of tropism than HIV, with certain strains readily
infecting cells of epithelial origin (such as Crandell feline
kidney [CRFK] cells) as well as CD8* and CD4" T lympho-
cytes, macrophages, and astroglia (2, 3, 15, 37). FIV and HIV-1
have also been associated with similar neurologic signs and
central nervous system lesions (6, 11, 13-15, 43). FIV has been
isolated from both cerebrospinal fluid and brain tissues of
naturally and experimentally infected cats (45, 46).

Like HIV, FIV replicates in vitro in astroglia and microglia
of the central nervous system but apparently not in oligoden-
drocytes or neurons (12, 13, 15). Neurologic disease could be
the result of FIV- or HIV-induced alterations in astroglial or
microglial function. Astroglia, the most abundant cells of the
central nervous system, are macroglia that maintain ion con-
centrations, take up and metabolize neurotransmitters, regu-
late the differentiation and function of myelinated axons, and
aid in the formation of tight junctions between endothelial
cells in the blood-brain barrier (21, 27-29, 41). They are also a
source for cytokines that are involved in cellular signaling,
inflammatory responses, and antigen presentation (19, 20, 22,
34).
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The cellular mechanisms for lentivirus-induced lesions are
not well studied, although these viruses often induce cell-cell
fusion, resulting in multinucleated cells and limited viability in
susceptible target cells. In addition, there is evidence suggest-
ing that HIV infection alters membrane integrity and that
membrane-HIV interactions play a critical role in the patho-
genesis of AIDS (7, 17, 23, 33). Membrane interactions of the
host cell with HIV or viral proteins are postulated to cause
permeability changes in the membrane, interference with the
normal homeostasis of the cell, alteration of ion fluxes, eleva-
tion of intracellular Ca?* concentrations, and an increase in
membrane unsaturated oleic acid (7, 8, 17, 23, 30, 33, 36).

Virally induced effects of gap junctional intercellular com-
munication (GJIC) and the dissipation of mitochondrial mem-
brane potential (MMP) are two critical end points of cellular
injury which are very sensitive to changes in intracellular Ca®*
levels. MMP is essential in the generation of energy for cellular
homeostasis. Whereas the outer mitochondrial membrane is
permeable to most ions, the inner membrane houses the
electron transport chain-driven proton pump. The resulting
electrochemical gradient facilitates a continuous cycling of H*,
allowing the transport of certain ions, such as Ca®>* and K™,
and high-energy phosphates between the cytosol and the
mitochondria (31).

Direct intercellular communication occurs through gap junc-
tions within the cytoplasmic membrane. These junctions are
aggregates of cell-cell channels which join adjacent cells and
mediate bidirectional diffusion of inorganic ions and small
molecules (<1 kDa) between cells but do not mediate the
passage of macromolecules (32). Individual channels between
adjacent cells are formed by the alignment of two hexameric
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aggregates of proteins called connexons which form a hydro-
philic pore about 1 nm wide. GJIC is involved in the mainte-
nance of cellular homeostasis, growth control, cell repair, and
neoplastic transformation (18).

In order to evaluate potential molecular targets of FIV-
induced cellular injury, fluorescent probes for specific cellular
functions were used to examine the in situ effects of viral
replication on MMP and GJIC. The Petaluma strain of FIV
acutely infects primary astroglia, producing obvious syncytia
and cell death, whereas this strain chronically infects the
immortalized CRFK cells in the absence of a cytopathic effect
(9, 10, 14, 15, 44).

FIV infection of CRFK cells and astroglia. MMP and GJIC
in astroglia acutely infected and CRFK cells persistently
infected with the Petaluma strain of FIV were measured.
Cultured CRFK cells maintained in Dulbecco’s modified Ea-
gle’s medium with 10% calf serum, 1X minimal essential
medium (Gibco, Gaithersburg, Md.), and 1 mM sodium pyru-
vate with penicillin and streptomycin (Sigma, St. Louis, Mo.)
had been persistently infected for more than 6 months with the
Petaluma strain of FIV (NIH AIDS Repository). Astroglia
from fetal domestic cats at 50 to 60 days of gestation were
prepared as described by Zenger et al. (47) and maintained in
Dulbecco’s modified Eagle’s medium F12 (1:1, vol/vol) with
15% fetal bovine serum. A glial fibrillary acidic protein assay
with rabbit anti-bovine glial fibrillary acidic protein antibody
(Dako, Carpinteria, Calif.) was used to confirm the astroglial
nature of the cultured central nervous system cells (47).
Astroglia were inoculated by incubation for 1 h at 37°C with
viral stock from supernatant fluid of Petaluma strain-infected
CRFK cells having a reverse transcri?tase activity of 7.8 X 10°
cpm/ml. The astroglia in a 75-cm” flask were infected at
approximately 50% confluency with 1 ml of the stock virus or
with medium. After incubating at 37°C for 1 h, the cells were
given fresh medium and observed daily for the presence of
syncytia. Uninfected cells were added two or three times per
week to maintain viability. Infected astroglia were analyzed at
15 to 20 days postinfection. Both cell types were subcultured at
a density of 2 X 10° viable cells in 35-mm-diameter plastic
tissue culture dishes 48 h prior to evaluation of MMP or GJIC.

An ACAS 570 interactive laser cytometer (Meridian Instru-
ments, Okemos, Mich.) permitted evaluations of these param-
eters in individual cells as well as in populations of cells.
Therefore, conditions were selected so that a high percentage
of cells in the sample population were supporting viral repli-
cation. Unlike infected CRFK cells and normal control cells,
astroglia infected with the Petaluma strain of FIV began
forming syncytia 3 days after subculturing with added viable,
uninfected cells. The cultured CRFK cells and astroglia were
examined 48 h after subculturing in order to avoid measuring
changes that might reflect membrane fusion in the latter cells.
At this time, evaluation of the infected cells by indirect
immunofluorescence assay indicated that 95% of the CRFK
cells and 91% of the astrocytes were infected with FIV (40)
and microscopic examination indicated that the cells were well
attached and were not showing signs of a cytopathic effect.
Although similar percentages of astroglia and CRFK cells were
infected, the amount of virus in the supernatants as measured
by the reverse transcriptase assay (2) was more than four times
greater in the infected astroglia (15.1 X 10° cpm/10° cells) than
in the CRFK cells (3.49 X 10° cpm/10° cells). The intensity of
FIV-specific immunofluorescence was also consistently greater
in the infected astroglia (data not shown). Therefore, the
amount of virus produced by the astroglia was considerably
greater than the amount produced by the persistently infected
CRFK cells. For each experiment, the cell cultures were
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divided into one control and at least two treated groups, with
three to six culture dishes per group. Means were compared by
Duncan’s multiple range test for variables and the General
Linear Models procedure. The P values of <0.05 were consid-
ered significant.

Effects of viral replication on MMP. The mitochondrial
incorporation of the cationic fluorescent dye rhodamine 123 is
dependent on the presence of an intact electrochemical gradi-
ent across the mitochondrial inner membrane. Therefore, a
decrease in fluorescence values indicates a dissipation of MMP
(4, 16). The cationic fluorescent dye rhodamine 123, prepared
as a 2-mg/ml stock in ethanol, was used as a probe for
examining the dissipation of MMP (4, 16). After overnight
incubation at 37°C, the infected and uninfected control cul-
tured cells were washed four times with Dulbecco’s phosphate-
buffered saline (PBS) and incubated for 30 min at 37°C with
rhodamine 123 diluted from the stock solution to 5 pg/ml in
serum-free and phenol red-free medium. The cells were sub-
sequently washed four times in serum-free medium without
phenol red, and the fluorescence intensity was immediately
evaluated with the ACAS 570 laser cytometer at an excitation
wavelength of 488 nm. Eight areas per dish in three dishes per
experimental group were examined in experiments from two
different days. The mean fluorescence intensity was deter-
mined for 50 to 60 cells per treatment group to provide a
relative measure of MMP based on the Nernstian distribution
of the dye (16).

A significant difference (P < 0.05) in the incorporation of
rhodamine 123 in the infected CRFK cells and astroglia
compared with the uninfected cells was observed (Fig. 1). The
mean fluorescence intensity in the infected astroglia was 44.9%
of that of the uninfected controls, and the intensity in the
infected CRFK cells was 80.8% of that of the uninfected
controls (Fig. 2). While the MMPs of normal astroglia and
CRFK cells were comparable, the incorporation of rhodamine
123 in infected astroglia was consistently less than that in the
infected CRFK cells. In addition, although equivalent numbers
of cells were infected, the amount of virus produced as
measured by reverse transcriptase activity was about four times
greater in the acutely infected astroglia. MMP may be quan-
titatively affected by the amount of replication because infec-
tion of astroglia which produced more virus than the CRFK
cells resulted in nearly twice the decrease in MMP compared
with that in corresponding uninfected control cells. Alterna-
tively, the greater impact of infection on the astroglia could be
the result of fundamental differences in the two cell types. The
inhibition of MMP may not, however, be a requirement for a
productive FIV infection because under conditions in which
the MMP in infected cells could be maintained at a normal
level (with camptothecin treatment), the amount of virus
produced was equivalent to that in infected CRFK cells with
the dissipation of MMP (unpublished data).

Effects of viral replication on GJIC. Fluorescence recovery
in photobleached cells is dependent on the ability of non-
membrane-permeating carboxyfluorescein to flow to bleached
cells from the neighboring cells through gap junctions. GJIC
was evaluated with the ACAS 570 by an assay of fluorescence
recovery after photobleaching (1, 44). The cells were washed
four times with PBS and stained for 15 min at 37°C with
S-carboxyfluorescein diacetate diluted to 10 pg/ml (from a
2-mg/ml stock solution in dimethyl sulfoxide in serumless
Dulbecco’s modified Eagle’s medium without phenol red. The
5-carboxyfluorescein diacetate is taken up by cells and con-
verted to carboxyfluorescein, which is able to diffuse through
gap junctions but not through nonjunctional membrane. The
cultures were rinsed four times and maintained in serumless,
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FIG. 1. Decreased rhodamine 123 uptake in FIV-infected astroglia and CRFK cells indicates a decrease in MMP. The relative fluorescence
intensity scale is shown on the left. Fluorescence from rhodamine 123 is shown in a field of uninfected (a) and infected (b) astroglia and uninfected

(c) and infected (d) CRFK cells. Bar, 50 pm.

phenol red-free medium before microscopic fields containing
aggregates of cells were selected. Single cells, when present,
served as photobleached negative controls. Single cells or small
isolated groups of nonphotobleached cells were used to mon-
itor potential background photobleaching resulting from image
scans and/or the presence of uncleaved dye. Two to three
abutting cells were selected from each field to monitor fluo-
rescence transfer at an excitation wavelength of 488 nm. One
or two cells from each field were photobleached while a single
cell or small group of cells were left unbleached and demar-
cated as positive controls. Photobleaching was done by deliv-
ering a high-intensity laser beam, which reduces the carboxy-
fluorescein due photochemically in the selected cells and
results in a reduction of fluorescence (20 to 40% of the origihal
value, depending on the cell type). Sufficient bleaching of
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FIG. 2. The effects of FIV infection on the mean uptake of
rhodamine 123. The fluorescence intensity means and standard errors
for 68 uninfected astroglia and 232 uninfected CRFK cells are
represented by the solid bars, and those for 57 infected astroglia and
222 infected CRFK cells are represented by the hatched bars.

fluorescence to measure recovery without causing visible cell
damage at the light-microscopic level was the criterion used to
determine laser strength, number of bleaches per cell, and scan
and bleach intensities. A series of five postbleach image scans
were generated. One scan was taken immediately postbleach,
and the subsequent four scans were taken at 1-min intervals
to measure the redistribution of intracellular fluorescence
through gap junctions. At least three analyses of cells from
each of six dishes (15 to 20 cells) per treatment group were

. conducted in two separate experiments. Fluorescence levels

were quantified by computer-assisted evaluation of data.

Estimation of a rate constant (k) for fluorescence recovery
was performed by fitting the percent fluorescence intensity at a
given time, F(¢), to the following equation: F(f) = Fq(1 — e )
+ F(0), where F,, represents the percent fluorescence recov-
ery of the bleached cell at equilibrium, and e~ is the estimate
of the rate constant at a given time, and F(0) is the percent
fluorescence intensity immediately following photobleaching
(1). The value of F,, depends on the number of contacting
cells and the initial level of bleaching. Data from at least 30
cells from each treatment group were pooled to obtain the
mean k values by curve fitting regression analysis, which
permits extrapolation of fluorescence recovery versus time.

The GJIC was monitored in both uninfected and infected
CRFK cells and astroglia. The cells were examined 24 h before
any syncytia could be detected in the cultured astroglia. Figure
3a and b represents a field of uninfected and of infected
astroglia, respectively, before and immediately after photo-
bleaching and at 4 min after photobleaching, showing the
recovery of fluorescence. The cell labelled 3 in each field was
left unbleached as a positive control, and those labelled 1 and
2 were bleached. The GJIC was lower in the infected astroglia
(cells 1 and 2 in Fig. 3b) than in the uninfected astroglia (cells
1 and 2 in Fig. 3a). Cell 2 of the infected population nearly
ceased to communicate with adjacent cells.

At any time up to 4 min after photobleaching of a population
of either cell type, the mean fluorescent recovery was less in
the infected cells than in the corresponding uninfected cells
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FIG. 3. Effects of FIV infection on GJIC in astroglia as measured by the recovery of fluorescence after photobleaching of individual uninfected
(a) and infected (b) astroglia. A single field is shown before (prebleach), immediately after (0 min), and at 4 min following bleaching of cells
labelled 1 and 2. Cell 3, which was not bleached, was used as a reference control. The graphs represent the recovery of fluorescence from each

cell. Green line, cell 1; red line, cell 2; yellow line, cell 3.

(Fig. 4a). The mean communication rates values (Fig. 4b)
indicated that the GJIC between infected cells was significantly
less than that between the corresponding uninfected cells (P,
<0.03 for CRFK cells and <0.02 for astroglia). The rates of
recovery for the infected CRFK cells and infected astroglia
were 71.5 and 70.1%, respectively, of the rates for the corre-
sponding uninfected cells.

Although the magnitude of virally induced reduction in both
cell types was similar, GJIC in infected and uninfected astro-
glia was greater than that in the CRFK cells examined. The
mean percent recovery of astroglia ranged from about 37% at
zero time to between 67 and 77% at 4 min after bleaching
compared with less than 20% to between 35 and 45% in the

CRFK cells. The difference in the communication rates of the
two types of cells was statistically significant (P < 0.0001).

It has been suggested that the closing of gap junctions is a
mechanism for isolating injured cells (32). Although the GJIC
of infected cells within tissues is not known, a possible expla-
nation for the GJIC decrease in infected cell culture could be
that cells tend to seal themselves off as a response to infection,
in general, rather than as a function of the presence of a virus
or viral replication in the cell.

Digital imaging procedures that have proven valuable in
examining mechanisms of mycotoxin and heavy metal cytotox-
icity have been exploited to examine the effects of viral
replication on critical cellular functions (5, 39). These sensitive
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FIG. 4. Effects of FIV infection on the GJIC of a population of cells. (a2) Mean percent fluorescence recoveries following photobleaching of
32 uninfected (closed circles) and 29 infected (open circles) astroglia and 26 uninfected (closed squares) and 27 infected (open squares) CRFK
cells. (b) Mean communication rates (per minute) calculated from panel a, with standard errors. Uninfected cells are represented by the solid bars;

infected cells are represented by the hatched bars.

molecular procedures utilize vital fluorescent probes to deter-
mine virally induced alterations in cellular homeostasis. Rep-
lication of the Petaluma strain of FIV was consistently associ-
ated with quantitative decreases in the MMP and GJIC in
cultured cells. It appears that these alterations are general
consequences of infection with this virus because decreases
were observed in two cell types which differ in origin, function,
and susceptibility to FIV replication. The astroglia were pri-
mary cell cultures that supported an acute infection, producing
large multinucleated cells, and the CRFK were immortalized
cultured cells supporting persistent FIV infection in the ab-
sence of syncytia or other signs of a cytopathic effect. Since an
ultrastructural analysis of gap junctions was not done, it is not
possible to determine whether reduced GJIC was due to
disruption of gap junctions or to reduced permeability of
channels due to other causes, such as cytoplasmic acidification
or altered phosphorylation of channel proteins.

The contributions of these alterations to a cytopathic effect
are not known. Membrane-associated changes could be related
to cell-cell fusion and syncytium formation. Viral replication
may directly alter GJIC and MMP or, alternatively, alter the
homeostasis of interacting end points. Zenger et al. (47) have
found other indicators of cell injury in astroglia; e.g., FIV
infection of astroglia decreased cytoplasmic glutathione levels
and altered Ca2* homeostasis (47). Because glutathione plays
a crucial role in protecting cells against free radicals and
electrophiles and in maintaining membrane integrity (26, 35),
its reduced activity could contribute to the observed injury in
mitochondrial membranes. Differences in intracellular Ca**
stores were detected following ionophore-induced Ca?* fluxes.
Decreases in MMP could, therefore be due to mitochondrial
uptake of Ca®* and/or changes in plasma membrane function.
These differences in the sequestering of calcium could be
associated with a calcium-induced loss of MMP (47).

These studies examined intracellular molecular alterations
induced by the replication of the Petaluma strain of FIV.
Similar studies with other strains of FIV will determine
whether these cellular changes are a common property of FIV
or a peculiarity of this strain. Such indicators of cell injury
could provide the tools to characterize the mechanisms for

acute and persistent infections and discriminate the vital
functions that determine virus-induced injury and cell death.

This work was funded by National Institute of Allergy and Infectious
Diseases grants Al 32360-01 and Al 90221-01A1.
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