16 research outputs found

    Insect Pollinated Crops, Insect Pollinators and US Agriculture: Trend Analysis of Aggregate Data for the Period 1992–2009

    Get PDF
    In the US, the cultivated area (hectares) and production (tonnes) of crops that require or benefit from insect pollination (directly dependent crops: apples, almonds, blueberries, cucurbits, etc.) increased from 1992, the first year in this study, through 1999 and continued near those levels through 2009; aggregate yield (tonnes/hectare) remained unchanged. The value of directly dependent crops attributed to all insect pollination (2009 USD) decreased from 14.29billionin1996,thefirstyearforvaluedatainthisstudy,to14.29 billion in 1996, the first year for value data in this study, to 10.69 billion in 2001, but increased thereafter, reaching 15.12billionby2009.Thevaluesattributedtohoneybeesandnon−Apispollinatorsfollowedsimilarpatterns,reaching15.12 billion by 2009. The values attributed to honey bees and non-Apis pollinators followed similar patterns, reaching 11.68 billion and 3.44billion,respectively,by2009.Thecultivatedareaofcropsgrownfromseedsresultingfrominsectpollination(indirectlydependentcrops:legumehays,carrots,onions,etc.)wasstablefrom1992through1999,buthassincedeclined.Productionofthosecropsalsodeclined,albeitnotasrapidlyasthedeclineincultivatedarea;thisasymmetrywasduetoincreasesinaggregateyield.Thevalueofindirectlydependentcropsattributedtoinsectpollinationdeclinedfrom3.44 billion, respectively, by 2009. The cultivated area of crops grown from seeds resulting from insect pollination (indirectly dependent crops: legume hays, carrots, onions, etc.) was stable from 1992 through 1999, but has since declined. Production of those crops also declined, albeit not as rapidly as the decline in cultivated area; this asymmetry was due to increases in aggregate yield. The value of indirectly dependent crops attributed to insect pollination declined from 15.45 billion in 1996 to 12.00billionin2004,buthassincetrendedupward.Thevalueofindirectlydependentcropsattributedtohoneybeesandnon−Apispollinators,exclusiveofalfalfaleafcutterbees,hasdeclinedsince1996to12.00 billion in 2004, but has since trended upward. The value of indirectly dependent crops attributed to honey bees and non-Apis pollinators, exclusive of alfalfa leafcutter bees, has declined since 1996 to 5.39 billion and 1.15billion,respectivelyin2009.Thevalueofalfalfahayattributedtoalfalfaleafcutterbeesrangedbetween1.15 billion, respectively in 2009. The value of alfalfa hay attributed to alfalfa leafcutter bees ranged between 4.99 and $7.04 billion. Trend analysis demonstrates that US producers have a continued and significant need for insect pollinators and that a diminution in managed or wild pollinator populations could seriously threaten the continued production of insect pollinated crops and crops grown from seeds resulting from insect pollination

    ULTRA-BRIGHT OPTICAL TRANSIENTS ARE LINKED WITH TYPE Ic SUPERNOVAE

    Get PDF
    Recent searches by unbiased, wide-field surveys have uncovered a group of extremely luminous optical transients. The initial discoveries of SN 2005ap by the Texas Supernova Search and SCP-06F6 in a deep Hubble pencil beam survey were followed by the Palomar Transient Factory confirmation of host redshifts for other similar transients. The transients share the common properties of high optical luminosities (peak magnitudes ~−21 to −23), blue colors, and a lack of H or He spectral features. The physical mechanism that produces the luminosity is uncertain, with suggestions ranging from jet-driven explosion to pulsational pair instability. Here, we report the most detailed photometric and spectral coverage of an ultra-bright transient (SN 2010gx) detected in the Pan-STARRS 1 sky survey. In common with other transients in this family, early-time spectra show a blue continuum and prominent broad absorption lines of O ii. However, about 25 days after discovery, the spectra developed type Ic supernova features, showing the characteristic broad Fe ii and Si ii absorption lines. Detailed, post-maximum follow-up may show that all SN 2005ap and SCP-06F6 type transients are linked to supernovae Ic. This poses problems in understanding the physics of the explosions: there is no indication from late-time photometry that the luminosity is powered by 56Ni, the broad light curves suggest very large ejected masses, and the slow spectral evolution is quite different from typical Ic timescales. The nature of the progenitor stars and the origin of the luminosity are intriguing and open questions

    Valuing Insect Pollination Services with Cost of Replacement

    Get PDF
    Value estimates of ecosystem goods and services are useful to justify the allocation of resources towards conservation, but inconclusive estimates risk unsustainable resource allocations. Here we present replacement costs as a more accurate value estimate of insect pollination as an ecosystem service, although this method could also be applied to other services. The importance of insect pollination to agriculture is unequivocal. However, whether this service is largely provided by wild pollinators (genuine ecosystem service) or managed pollinators (commercial service), and which of these requires immediate action amidst reports of pollinator decline, remains contested. If crop pollination is used to argue for biodiversity conservation, clear distinction should be made between values of managed- and wild pollination services. Current methods either under-estimate or over-estimate the pollination service value, and make use of criticised general insect and managed pollinator dependence factors. We apply the theoretical concept of ascribing a value to a service by calculating the cost to replace it, as a novel way of valuing wild and managed pollination services. Adjusted insect and managed pollinator dependence factors were used to estimate the cost of replacing insect- and managed pollination services for the Western Cape deciduous fruit industry of South Africa. Using pollen dusting and hand pollination as suitable replacements, we value pollination services significantly higher than current market prices for commercial pollination, although lower than traditional proportional estimates. The complexity associated with inclusive value estimation of pollination services required several defendable assumptions, but made estimates more inclusive than previous attempts. Consequently this study provides the basis for continued improvement in context specific pollination service value estimates

    Measuring Dark Energy Properties with Photometrically Classified Pan-STARRS Supernovae. II. Cosmological Parameters

    Get PDF
    We use 1169 Pan-STARRS supernovae (SNe) and 195 low-z (z < 0.1) SNe Ia to measure cosmological parameters. Though most Pan-STARRS SNe lack spectroscopic classifications, in a previous paper we demonstrated that photometrically classified SNe can be used to infer unbiased cosmological parameters by using a Bayesian methodology that marginalizes over core-collapse (CC) SN contamination. Our sample contains nearly twice as many SNe as the largest previous SN Ia compilation. Combining SNe with cosmic microwave background (CMB) constraints from Planck, we measure the dark energy equation-of-state parameter w to be -0.989 +/- 0.057 (stat+sys). If w evolves with redshift as w(a) = w(0)(1 - a), we find w(0) = -0.912 +/- 0.149 and w(a) = -0.513 +/- 0.826. These results are consistent with cosmological parameters from the Joint Light-curve Analysis and the Pantheon sample. We try four different photometric classification priors for Pan-STARRS SNe and two alternate ways of modeling CC SN contamination, finding that no variant gives a w differing by more than 2% from the baseline measurement. The systematic uncertainty on w due to marginalizing over CC SN contamination, sigma(cc)(w) = 0.012, is the third smallest source of systematic uncertainty in this work. We find limited (1.6 sigma) evidence for evolution of the SN color-luminosity relation with redshift, a possible systematic that could constitute a significant uncertainty in future high-z analyses. Our data provide one of the best current constraints on w, demonstrating that samples with similar to 5% CC SN contamination can give competitive cosmological constraints when the contaminating distribution is marginalized over in a Bayesian framework

    The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample

    Get PDF
    We present optical light curves, redshifts, and classifications for 365 spectroscopically confirmed Type Ia supernovae (SNe Ia) discovered by the Pan-STARRS1 (PS1) Medium Deep Survey. We detail improvements to the PS1 SN photometry, astrometry, and calibration that reduce the systematic uncertainties in the PS1 SN Ia distances. We combine the subset of 279 PS1 SNe Ia (0.03 < z < 0.68) with useful distance estimates of SNe Ia from the Sloan Digital Sky Survey (SDSS), SNLS, and various low-z and Hubble Space Telescope samples to form the largest combined sample of SNe Ia, consisting of a total of 1048 SNe Ia in the range of 0.01 < z < 2.3, which we call the "Pantheon Sample." When combining Planck 2015 cosmic microwave background (CMB) measurements with the Pantheon SN sample, we find Omega(m) = 0.307 +/- 0.012 and w = -1.026 +/- 0.041 for the wCDM model. When the SN and CMB constraints are combined with constraints from BAO and local H-0 measurements, the analysis yields the most precise measurement of dark energy to date: w(0) = -1.007 +/- 0.089 and w(a) = -0.222 +/- 0.407 for the w(0)w(a) CDM model. Tension with a cosmological constant previously seen in an analysis of PS1 and low-z SNe has diminished after an increase of 2x in the statistics of the PS1 sample, improved calibration and photometry, and stricter light-curve quality cuts. We find that the systematic uncertainties in our measurements of dark energy are almost as large as the statistical uncertainties, primarily due to limitations of modeling the low-redshift sample. This must be addressed for future progress in using SNe Ia to measure dark energy

    Genetic structure of honeybee populations from southern Brazil and Uruguay

    No full text
    Apis mellifera scutellata was introduced to Brazil in 1956 and Africanized honeybee populations have now spread from Argentina to the southwestern United States. Temperate climatic restrictions seem to be a natural limit to Africanized honeybee expansion around parallels 35° to 40° SL. We used allozyme loci (Mdh-1 and Hk-1) and mtDNA haplotypes to characterize honeybee populations in southern Brazil and Uruguay and define a possible transition area between Africanized and European bees. Samples of 194 bee colonies were collected from ten localities between 30°-35° SL and 52°-59° WL. The mtDNA restriction patterns of these colonies were obtained through digestion of the mitochondrial genome by Eco RI, or by digestion by Bgl II and Xba I of the cytochrome B locus and the COI-COII intergenic region, respectively. The distribution limit of African bee colonies, i.e., those populations with only the African mtDNA haplotype and with a high proportion of African genes as shown by allozyme analysis, is located in northern Uruguay, with a hybridization zone located farther south in Uruguay. A gradual cline from north to south was observed, confirmed by mtDNA, racial admixture, and genetic distance analyses. No evidence of either gametic disequilibrium between nuclear markers or cytonuclear disequilibrium among the nuclear and mtDNA genotypes was detected, suggesting that the hybridization process has been completed
    corecore