621 research outputs found

    Induced cosmology on a codimension-2 brane in a conical bulk

    Full text link
    We study the cosmology of a 5-dimensional brane, which represents a regularization of a 4-dimensional codimension-2 brane, embedded in a conical bulk. The brane is assumed to be tensional, and to contain a curvature term. Cosmology is obtained by letting the brane move trough the bulk, and implementing dynamical junction conditions. Our results shows that, with suitable choices of the parameters, the resulting cosmological dynamics mimics fairly well standard 4-dimensional cosmology.Comment: 14 pages, 1 figure. Corrections and clarifications troughout the text. Match the published version on NP

    Lorentz-violation and cosmological perturbations: a toy brane-world model

    Full text link
    We study possible effects of Lorentz-violation on the generation of cosmological perturbations at inflation by introducing a simple inflating five-dimensional brane-world setup with violation of four-dimensional Lorentz-invariance at an energy scale kk. We consider massless scalar field, meant to mimic perturbations of inflaton and/or gravitational field, in this background. At three-momenta below kk, there exists a zero mode localized on the brane, whose behaviour coincides with that in four-dimensional theory. On the contrary, at three-momenta above kk, the localized mode is absent and physics is entirely five-dimensional. As three-momenta get redshifted, more modes get localized on the brane, the phenomenon analogous to ``mode generation''. We find that for k≫Hk\gg H, where HH is the inflationary Hubble scale, the spectrum of perturbations coincides with that in four-dimensional theory. For k<Hk < H and time-dependent bulk parameters, the spectrum deviates, possibly strongly, from the flat spectrum even for pure de Sitter inflation.Comment: 5 figures, iopart, minor changes, appendix adde

    Real-time D-brane condensation

    Get PDF
    Unstable D-branes or brane-antibrane systems can decay to lower-dimensional branes. In the effective field theory description, the final state branes are defects in the tachyon field which describes the initial instability. We study the dynamical formation of codimension one defects (kinks) using Sen's ansatz for the tachyon Lagrangian. It is shown that the slope of the kink diverges within a finite amount of time after the tachyon starts to roll. We discuss the relevance for reheating after brane-antibrane inflation.Comment: 10 pages, 5 figures; added reference to hep-th/020710

    On Bouncing Brane-Worlds, S-branes and Branonium Cosmology

    Full text link
    We present several higher-dimensional spacetimes for which observers living on 3-branes experience an induced metric which bounces. The classes of examples include boundary branes on generalised S-brane backgrounds and probe branes in D-brane/anti D-brane systems. The bounces we consider normally would be expected to require an energy density which violates the weak energy condition, and for our co-dimension one examples this is attributable to bulk curvature terms in the effective Friedmann equation. We examine the features of the acceleration which provides the bounce, including in some cases the existence of positive acceleration without event horizons, and we give a geometrical interpretation for it. We discuss the stability of the solutions from the point of view of both the brane and the bulk. Some of our examples appear to be stable from the bulk point of view, suggesting the possible existence of stable bouncing cosmologies within the brane-world framework.Comment: 35 pages, 7 figures, JHEP style. Title changed and references adde

    Branonium

    Full text link
    We study the bound states of brane/antibrane systems by examining the motion of a probe antibrane moving in the background fields of N source branes. The classical system resembles the point-particle central force problem, and the orbits can be solved by quadrature. Generically the antibrane has orbits which are not closed on themselves. An important special case occurs for some Dp-branes moving in three transverse dimensions, in which case the orbits may be obtained in closed form, giving the standard conic sections but with a nonstandard time evolution along the orbit. Somewhat surprisingly, in this case the resulting elliptical orbits are exact solutions, and do not simply apply in the limit of asymptotically-large separation or non-relativistic velocities. The orbits eventually decay through the radiation of massless modes into the bulk and onto the branes, and we estimate this decay time. Applications of these orbits to cosmology are discussed in a companion paper.Comment: 34 pages, LaTeX, 4 figures, uses JHEP

    D-Brane Chemistry

    Full text link
    We study several different kinds of bound states built from D-branes and orientifolds. These states are to atoms what branonium - the bound state of a brane and its anti-brane - is to positronium, inasmuch as they typically involve a light brane bound to a much heavier object with conserved charges which forbid the system's decay. We find the fully relativistic motion of a probe Dp'-brane in the presence of source Dp-branes is integrable by quadratures. Keplerian conic sections are obtained for special choices for p and p' and the systems are shown to be equivalent to nonrelativistic systems. Their quantum behaviour is also equivalent to the corresponding non-relativistic limit. In particular the p=6, p'=0 case is equivalent to a non-relativistic dyon in a magnetic monopole background, with the trajectories in the surface of a cone. We also show that the motion of the probe branes about D6-branes in IIA theory is equivalent to the motion of the corresponding probes in the uplift to M-theory in 11 dimensions, for which there are no D6-branes but their fields are replaced by a particular Taub-NUT geometry. We further discuss the interactions of D-branes and orientifold planes having the same dimension. this system behaves at large distances as a brane-brane system but at shorter distances it does not have the tachyon instability.Comment: ref. added and typos correcte

    On modified tachyon DBI action

    Full text link
    Recently a modification of the tachyon DBI action has been proposed in which the tachyon carries the internal CP matrix \sigma_1 and \sigma_2. In this paper, we find the momentum expansion of the disk level S-matrix element of four tachyons and one gauge field in superstring theory and show that the first and second order terms of the expansion are in perfect agreement with the above tachyon DBI action.Comment: 15 pages, no figure; V2: typos corrected, a reference added; V3: the final version to appear in Nucl. Phys.

    Spontaneous Lorentz Violation and the Long-Range Gravitational Preferred-Frame Effect

    Full text link
    Lorentz-violating operators involving Standard Model fields are tightly constrained by experimental data. However, bounds are more model-independent for Lorentz violation appearing in purely gravitational couplings. The spontaneous breaking of Lorentz invariance by the vacuum expectation value of a vector field selects a universal rest frame. This affects the propagation of the graviton, leading to a modification of Newton's law of gravity. We compute the size of the long-range preferred-frame effect in terms of the coefficients of the two-derivative operators in the low-energy effective theory that involves only the graviton and the Goldstone bosons.Comment: 11 pages, no figures, revtex4. v4: Replaced to match version to appear in Phys. Lett. B (minor corrections of form

    Generic Modal Cut Elimination Applied to Conditional Logics

    Full text link
    We develop a general criterion for cut elimination in sequent calculi for propositional modal logics, which rests on absorption of cut, contraction, weakening and inversion by the purely modal part of the rule system. Our criterion applies also to a wide variety of logics outside the realm of normal modal logic. We give extensive example instantiations of our framework to various conditional logics. For these, we obtain fully internalised calculi which are substantially simpler than those known in the literature, along with leaner proofs of cut elimination and complexity. In one case, conditional logic with modus ponens and conditional excluded middle, cut elimination and complexity were explicitly stated as open in the literature

    Brane cosmological solutions in six-dimensional warped flux compactifications

    Full text link
    We study cosmology on a conical brane in the six-dimensional Einstein-Maxwell-dilaton system, where the extra dimensions are compactified by a magnetic flux. We systematically construct exact cosmological solutions using the fact that the system is equivalently described by (6+n)-dimensional pure Einstein-Maxwell theory via dimensional reduction. In particular, we find a power-law inflationary solution for a general dilatonic coupling. When the dilatonic coupling is given by that of Nishino-Sezgin chiral supergravity, this reduces to the known solution which is not inflating. The power-law solution is shown to be the late-time attractor. We also investigate cosmological tensor perturbations in this model using the (6+n)-dimensional description. We obtain the separable equation of motion and find that there always exist a zero mode, while tachyonic modes are absent in the spectrum. The mass spectrum of Kaluza-Klein modes is obtained numerically.Comment: 12 pages, 2 figures; v2: references added; v3: version published in JCA
    • …
    corecore