440 research outputs found

    EFT beyond the horizon: stochastic inflation and how primordial quantum fluctuations go classical

    Get PDF
    We identify the effective theory describing inflationary super-Hubble scales and show it to be a special case of effective field theories appropriate to open systems. Open systems allow information to be exchanged between the degrees of freedom of interest and those that are integrated out, such as for particles moving through a fluid. Strictly speaking they cannot in general be described by an effective lagrangian; rather the appropriate `low-energy' limit is instead a Lindblad equation describing the evolution of the density matrix of the slow degrees of freedom. We derive the equation relevant to super-Hubble modes of quantum fields in near-de Sitter spacetimes and derive two implications. We show the evolution of the diagonal density-matrix elements quickly approaches the Fokker-Planck equation of Starobinsky's stochastic inflationary picture. This provides an alternative first-principles derivation of this picture's stochastic noise and drift, as well as its leading corrections. (An application computes the noise for systems with a sub-luminal sound speed.) We argue that the presence of interactions drives the off-diagonal density-matrix elements to zero in the field basis. This shows why the field basis is the `pointer basis' for the decoherence of primordial quantum fluctuations while they are outside the horizon, thus allowing them to re-enter as classical fluctuations, as assumed when analyzing CMB data. The decoherence process is efficient, occurring after several Hubble times even for interactions as weak as gravitational-strength. Crucially, the details of the interactions largely control only the decoherence time and not the nature of the final late-time stochastic state, much as interactions can control the equilibration time for thermal systems but are largely irrelevant to the properties of the resulting equilibrium state

    Whole genome sequencing Mycobacterium tuberculosis directly from sputum identifies more genetic diversity than sequencing from culture

    Get PDF
    BACKGROUND: Repeated culture reduces within-sample Mycobacterium tuberculosis genetic diversity due to selection of clones suited to growth in culture and/or random loss of lineages, but it is not known to what extent omitting the culture step altogether alters genetic diversity. We compared M. tuberculosis whole genome sequences generated from 33 paired clinical samples using two methods. In one method DNA was extracted directly from sputum then enriched with custom-designed SureSelect (Agilent) oligonucleotide baits and in the other it was extracted from mycobacterial growth indicator tube (MGIT) culture. RESULTS: DNA directly sequenced from sputum showed significantly more within-sample diversity than that from MGIT culture (median 5.0 vs 4.5 heterozygous alleles per sample, p = 0.04). Resistance associated variants present as HAs occurred in four patients, and in two cases may provide a genotypic explanation for phenotypic resistance. CONCLUSIONS: Culture-free M. tuberculosis whole genome sequencing detects more within-sample diversity than a leading culture-based method and may allow detection of mycobacteria that are not actively replicating

    Composite Fermion Metals from Dyon Black Holes and S-Duality

    Full text link
    We propose that string theory in the background of dyon black holes in four-dimensional anti-de Sitter spacetime is holographic dual to conformally invariant composite Dirac fermion metal. By utilizing S-duality map, we show that thermodynamic and transport properties of the black hole match with those of composite fermion metal, exhibiting Fermi liquid-like. Built upon Dirac-Schwinger-Zwanziger quantization condition, we argue that turning on magnetic charges to electric black hole along the orbit of Gamma(2) subgroup of SL(2,Z) is equivalent to attaching even unit of statistical flux quanta to constituent fermions. Being at metallic point, the statistical magnetic flux is interlocked to the background magnetic field. We find supporting evidences for proposed holographic duality from study of internal energy of black hole and probe bulk fermion motion in black hole background. They show good agreement with ground-state energy of composite fermion metal in Thomas-Fermi approximation and cyclotron motion of a constituent or composite fermion excitation near Fermi-point.Comment: 30 pages, v2. 1 figure added, minor typos corrected; v3. revised version to be published in JHE

    Potential effects of oilseed rape expressing oryzacystatin-1 (OC-1) and of purified insecticidal proteins on larvae of the solitary bee Osmia bicornis

    Get PDF
    Despite their importance as pollinators in crops and wild plants, solitary bees have not previously been included in non-target testing of insect-resistant transgenic crop plants. Larvae of many solitary bees feed almost exclusively on pollen and thus could be highly exposed to transgene products expressed in the pollen. The potential effects of pollen from oilseed rape expressing the cysteine protease inhibitor oryzacystatin-1 (OC-1) were investigated on larvae of the solitary bee Osmia bicornis (= O. rufa). Furthermore, recombinant OC-1 (rOC-1), the Bt toxin Cry1Ab and the snowdrop lectin Galanthus nivalis agglutinin (GNA) were evaluated for effects on the life history parameters of this important pollinator. Pollen provisions from transgenic OC-1 oilseed rape did not affect overall development. Similarly, high doses of rOC-1 and Cry1Ab as well as a low dose of GNA failed to cause any significant effects. However, a high dose of GNA (0.1%) in the larval diet resulted in significantly increased development time and reduced efficiency in conversion of pollen food into larval body weight. Our results suggest that OC-1 and Cry1Ab expressing transgenic crops would pose a negligible risk for O. bicornis larvae, whereas GNA expressing plants could cause detrimental effects, but only if bees were exposed to high levels of the protein. The described bioassay with bee brood is not only suitable for early tier non-target tests of transgenic plants, but also has broader applicability to other crop protection products

    Methods for specifying the target difference in a randomised controlled trial : the Difference ELicitation in TriAls (DELTA) systematic review

    Get PDF
    Peer reviewedPublisher PD

    Brane-World Gravity

    Get PDF
    The observable universe could be a 1+3-surface (the "brane") embedded in a 1+3+\textit{d}-dimensional spacetime (the "bulk"), with Standard Model particles and fields trapped on the brane while gravity is free to access the bulk. At least one of the \textit{d} extra spatial dimensions could be very large relative to the Planck scale, which lowers the fundamental gravity scale, possibly even down to the electroweak (∟\sim TeV) level. This revolutionary picture arises in the framework of recent developments in M theory. The 1+10-dimensional M theory encompasses the known 1+9-dimensional superstring theories, and is widely considered to be a promising potential route to quantum gravity. At low energies, gravity is localized at the brane and general relativity is recovered, but at high energies gravity "leaks" into the bulk, behaving in a truly higher-dimensional way. This introduces significant changes to gravitational dynamics and perturbations, with interesting and potentially testable implications for high-energy astrophysics, black holes, and cosmology. Brane-world models offer a phenomenological way to test some of the novel predictions and corrections to general relativity that are implied by M theory. This review analyzes the geometry, dynamics and perturbations of simple brane-world models for cosmology and astrophysics, mainly focusing on warped 5-dimensional brane-worlds based on the Randall--Sundrum models. We also cover the simplest brane-world models in which 4-dimensional gravity on the brane is modified at \emph{low} energies -- the 5-dimensional Dvali--Gabadadze--Porrati models. Then we discuss co-dimension two branes in 6-dimensional models.Comment: A major update of Living Reviews in Relativity 7:7 (2004) "Brane-World Gravity", 119 pages, 28 figures, the update contains new material on RS perturbations, including full numerical solutions of gravitational waves and scalar perturbations, on DGP models, and also on 6D models. A published version in Living Reviews in Relativit

    Head Lice in Norwegian Households: Actions Taken, Costs and Knowledge

    Get PDF
    Introduction: Head lice infestations cause distress in many families. A well-founded strategy to reduce head lice prevalence must shorten the infectious period of individual hosts. To develop such a strategy, information about the actions taken (inspection, treatment and informing others about own infestations), level of knowledge and costs is needed. The present study is the first to consider all these elements combined. Materials and Methods: A questionnaire was answered by 6203 households from five geographically separate

    The collapse of the wave function in the joint metric-matter quantization for inflation

    Full text link
    It has been argued that the standard inflationary scenario suffers from a serious deficiency as a model for the origin of the seeds of cosmic structure: it can not truly account for the transition from an early homogeneous and isotropic stage to another one lacking such symmetries. The issue has often been thought as a standard instance of the "quantum measurement problem", but as has been recently argued by some of us the situation reaches a critical level in the cosmological context of interest here. This has lead to a proposal in which the standard paradigm is supplemented by a hypothesis concerning the self-induced dynamical collapse of the wave function, as representing the physical mechanism through which such change of symmetry is brought forth. This proposal was formulated within the context of semiclassical gravity. Here we investigate an alternative realization of such idea implemented directly within the standard analysis in terms of a quantum field jointly describing the inflaton and metric perturbations, the so called Mukhanov-Sasaki variable. We show that even though the prescription is quite different, the theoretical predictions include some deviations from the standard ones, which are indeed very similar to those found in the early studies. We briefly discuss the differences between the two at both, the conceptual and practical levels.Comment: 31 pages, 6 figures. Replaced to match the published versio

    The Initial-Final Mass Relation among White Dwarfs in Wide Binaries

    Get PDF
    We present the initial-final mass relation derived from 10 white dwarfs in wide binaries that consist of a main sequence star and a white dwarf. The temperature and gravity of each white dwarf was measured by fitting theoretical model atmospheres to the observed spectrum using a χ2\chi^{2} fitting algorithm. The cooling time and mass was obtained using theoretical cooling tracks. The total age of each binary was estimated from the chromospheric activity of its main sequence component to an uncertainty of about 0.17 dex in log \textit{t} The difference between the total age and white dwarf cooling time is taken as the main sequence lifetime of each white dwarf. The initial mass of each white dwarf was then determined using stellar evolution tracks with a corresponding metallicity derived from spectra of their main sequence companions, thus yielding the initial-final mass relation. Most of the initial masses of the white dwarf components are between 1 - 2 M⊙_{\odot}. Our results suggest a correlation between the metallicity of a white dwarf's progenitor and the amount of post-main-sequence mass loss it experiences - at least among progenitors with masses in the range of 1 - 2 M⊙_{\odot}. A comparison of our observations to theoretical models suggests that low mass stars preferentially lose mass on the red giant branch.Comment: 28 pages, 8 figures, accepted for publication in Ap
    • …
    corecore